--- license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-xsum-finetuned-sst2 results: [] datasets: - samsum pipeline_tag: summarization --- # bart-large-xsum-finetuned-sst2 This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4333 - Rouge1: 0.5389 - Rouge2: 0.2841 - Rougel: 0.4406 - Rougelsum: 0.4935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 0.3028 | 1.0 | 920 | 0.3135 | 0.5331 | 0.2844 | 0.4417 | 0.4908 | | 0.2301 | 2.0 | 1841 | 0.3304 | 0.5371 | 0.2878 | 0.4393 | 0.4936 | | 0.1626 | 3.0 | 2762 | 0.3395 | 0.5415 | 0.2907 | 0.4503 | 0.4978 | | 0.112 | 4.0 | 3683 | 0.3898 | 0.5415 | 0.2830 | 0.4406 | 0.4952 | | 0.0747 | 5.0 | 4600 | 0.4333 | 0.5389 | 0.2841 | 0.4406 | 0.4935 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2