SimingSiming
commited on
Commit
·
5729c64
1
Parent(s):
9ba770f
Update PPO BipedalWalkerHardcore-v3 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo_walker_v3.zip +3 -0
- ppo_walker_v3/_stable_baselines3_version +1 -0
- ppo_walker_v3/data +99 -0
- ppo_walker_v3/policy.optimizer.pth +3 -0
- ppo_walker_v3/policy.pth +3 -0
- ppo_walker_v3/pytorch_variables.pth +3 -0
- ppo_walker_v3/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -23.49 +/- 10.28
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: BipedalWalkerHardcore-v3
|
20 |
+
type: BipedalWalkerHardcore-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **BipedalWalkerHardcore-v3**
|
24 |
+
This is a trained model of a **PPO** agent playing **BipedalWalkerHardcore-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f12c8d83b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12c8d83b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12c8d83c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12c8d83cb0>", "_build": "<function ActorCriticPolicy._build at 0x7f12c8d83d40>", "forward": "<function ActorCriticPolicy.forward at 0x7f12c8d83dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12c8d83e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f12c8d83ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12c8d83f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12c8d8a050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12c8d8a0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f12c8d5a690>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 976536, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652297975.3443522, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAHpjkj2zY+O8iANFPd/1grypWT2/Af5APwDWK76v8SK/AACAPwv1jD9ECze+bFtvPwAAAAAAAAAAr/JqPr2dbT6j7nU+PHaCPrZVjj5FjaA+wvu8PkwY7D7BGCI/AACAP9bEFL8jILg8HIswuxQwnz1/vFW/AAAAs0S+2z77/38/AAAAAOanbD9PeG6//+2CPzAGYj8AAIA/N+7iPvaB5T42iu0+FAX8PkWnxT5vuqM+RnmOPjapgD7euIM+ynPYPpwhLb9D9o+6zC/eO/qu4DpLRE6/ABukuLDfFD4BNk0/AAAAAJ5EkT8APLc2RFZvP9VANDoAAIA/w4XbPvkD3j4ZyeU+AwryPrFzuj4Lc5o+QGaGPiq9cj4V6WE+kB24PkOSXz8F95w9K3aTu+cmDb71JB++qqzXPqBABr39/3+/AAAAAF7RkD8AAAAADOXmPgAAgL8AAAAAZCnWPgSY2D6RLOA+3NbtPgC+AT/2WBI/g0MsPwc1Vz8AAIA/AACAP1tmQD7dMQA9wG3YvEbGAz3OnVG/AMATt4itQL65Rn+/AACAPy0+eT/DdIC+GAZsP1VV1bMAAIA/92VwPt0gcz4mo3s+AX2FPv6ikT68RqQ+El7BPmSS8T5l2yU/AACAP/rYfD0vm+874R0uPCYMEr3exVW/gOiYuc6kgD5JQa2+AACAP+NMkT8AgKE3ZJhvP4t72zsAAIA/Gh9gPq+qYj57mWo+d+Z4PqbGhz5PJ5k+aEa0PjA34T7RcVg/AACAPz+EMj6NqqY8Ctw3PM4a/zxZoU6/1k0vv2CCED6kzAI/AACAPxF3dT8EdDe+2BBpP1U+RroAAIA/NXB8PhxOfz6/HoQ+gyyMPkLumD79gKw+UA3LPq2r/T7qKS4/AACAP/63CT4a/kQ9ijqIvIacirxV1VW/ztMVv5CRfb79/3+/AACAPy7ggD/8/3+/1BiCP2D3rD8AAIA/lx9rPifLbT6kHXY+K4+CPupwjj71q6A+4R+9PmxF7D68NyI/TCFdP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.9033344, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEM8SZAQGXMCUhpRSlIwBbJRN0AeMAXSUR0CQj3yzXz19dX2UKGgGaAloD0MIK97IPPLlW8CUhpRSlGgVTdAHaBZHQJCSeaMJhOR1fZQoaAZoCWgPQwhAMEeP3y1awJSGlFKUaBVN0AdoFkdAkJeQWBSUDHV9lChoBmgJaA9DCDJyFva0FVvAlIaUUpRoFUtNaBZHQJCY37Hhjvx1fZQoaAZoCWgPQwjw37w48TxewJSGlFKUaBVN0AdoFkdAkJtp6po9LnV9lChoBmgJaA9DCLA9syRAul3AlIaUUpRoFU3QB2gWR0CQnJshxHXmdX2UKGgGaAloD0MIs++K4H90XMCUhpRSlGgVTdAHaBZHQJCfRQKrq+t1fZQoaAZoCWgPQwgYsrrVc0FawJSGlFKUaBVN0AdoFkdAkJ/F6/qPfnV9lChoBmgJaA9DCB+fkJ23ql3AlIaUUpRoFU3QB2gWR0CQy6mXw9aEdX2UKGgGaAloD0MISguXVdjVXcCUhpRSlGgVTdAHaBZHQJDXjGecx0x1fZQoaAZoCWgPQwiN1eb/VZ5dwJSGlFKUaBVN0AdoFkdAkNqdTYNAknV9lChoBmgJaA9DCLdFmQ0y9V3AlIaUUpRoFU3QB2gWR0CQ4PtjTa0ydX2UKGgGaAloD0MIzR/T2jQoXsCUhpRSlGgVTdAHaBZHQJDjk4ku6Et1fZQoaAZoCWgPQwh4KAr0iWlcwJSGlFKUaBVN0AdoFkdAkOTF6NVBEHV9lChoBmgJaA9DCMMRpFLsn1nAlIaUUpRoFU3QB2gWR0CQ550mMOwxdX2UKGgGaAloD0MIW+ogrwcyXsCUhpRSlGgVTdAHaBZHQJDoLyy2QXB1fZQoaAZoCWgPQwjKb9HJUqtcwJSGlFKUaBVLTmgWR0CQ6SL4etCBdX2UKGgGaAloD0MITUnW4ej+WcCUhpRSlGgVTdAHaBZHQJETnN3W4Ex1fZQoaAZoCWgPQwj+8zRgkIxdwJSGlFKUaBVN0AdoFkdAkR+2SdOIqXV9lChoBmgJaA9DCKcGms+56l3AlIaUUpRoFU3QB2gWR0CRIq6guh9LdX2UKGgGaAloD0MINsgkI2dWXcCUhpRSlGgVTdAHaBZHQJEo65BkZrJ1fZQoaAZoCWgPQwi54Az+ftBZwJSGlFKUaBVN0AdoFkdAkSt2DUVi4XV9lChoBmgJaA9DCH+hR4ye1lvAlIaUUpRoFU3QB2gWR0CRLL8LronsdX2UKGgGaAloD0MISgosgCnDWsCUhpRSlGgVTdAHaBZHQJEwAT8HfMx1fZQoaAZoCWgPQwgkKlQ3F7RcwJSGlFKUaBVN0AdoFkdAkTDYGdI5HXV9lChoBmgJaA9DCP2k2qfjEFzAlIaUUpRoFUtiaBZHQJExuGoJiRZ1fZQoaAZoCWgPQwiiCRSxiHVawJSGlFKUaBVN0AdoFkdAkVu0vK2a2HV9lChoBmgJaA9DCIC3QILiPFrAlIaUUpRoFU3QB2gWR0CRZ6YGt6omdX2UKGgGaAloD0MIZr0YyomUXcCUhpRSlGgVTdAHaBZHQJFqktQKrrB1fZQoaAZoCWgPQwiHF0SkpuNZwJSGlFKUaBVN0AdoFkdAkXDtWyTpxHV9lChoBmgJaA9DCJi/QubKSlrAlIaUUpRoFU3QB2gWR0CRc4VT72tddX2UKGgGaAloD0MIGLK61XNhWsCUhpRSlGgVTdAHaBZHQJF0u/WUbDN1fZQoaAZoCWgPQwjP86eN6nFdwJSGlFKUaBVN0AdoFkdAkXizohY/3XV9lChoBmgJaA9DCMyYgjXO5lnAlIaUUpRoFU3QB2gWR0CReY8/lhgFdX2UKGgGaAloD0MIrizRWWb4XMCUhpRSlGgVTdAHaBZHQJGjbJPqLTB1fZQoaAZoCWgPQwgvMZbpF1xiwJSGlFKUaBVNIARoFkdAkatAQg9vCXV9lChoBmgJaA9DCEKwql5+YV3AlIaUUpRoFU3QB2gWR0CRr1tPHktFdX2UKGgGaAloD0MIdLaA0Hp+W8CUhpRSlGgVTdAHaBZHQJGyZ/hESdx1fZQoaAZoCWgPQwhN9WT+0R1bwJSGlFKUaBVN0AdoFkdAkbjBQN0/4nV9lChoBmgJaA9DCAHfbd44nlvAlIaUUpRoFU3QB2gWR0CRvJEl3QlbdX2UKGgGaAloD0MIehhanZz5W8CUhpRSlGgVTdAHaBZHQJHAn4L1EmZ1fZQoaAZoCWgPQwhgdk8eFqJawJSGlFKUaBVN0AdoFkdAkcGA5myxA3V9lChoBmgJaA9DCLcKYqBrRlzAlIaUUpRoFUs1aBZHQJHCYOy3TeB1fZQoaAZoCWgPQwixiGGHsZJlwJSGlFKUaBVN1AVoFkdAkespPIn0CnV9lChoBmgJaA9DCL4vLlVpv1nAlIaUUpRoFU3QB2gWR0CR67fWcz68dX2UKGgGaAloD0MIATCeQUPaW8CUhpRSlGgVTdAHaBZHQJH3/ttygf51fZQoaAZoCWgPQwjbFI+L6klgwJSGlFKUaBVNBwNoFkdAkfh6UeMho3V9lChoBmgJaA9DCP5/nDBhklnAlIaUUpRoFU3QB2gWR0CR+vlFMIu5dX2UKGgGaAloD0MIpFLsaBzXWcCUhpRSlGgVTdAHaBZHQJIBa717IDJ1fZQoaAZoCWgPQwh5Wn7gKpldwJSGlFKUaBVN0AdoFkdAkgUbHp8neHV9lChoBmgJaA9DCBIwurw5jFrAlIaUUpRoFU3QB2gWR0CSCThrWRRudX2UKGgGaAloD0MIntMs0O6jXcCUhpRSlGgVTdAHaBZHQJIK80elsP91fZQoaAZoCWgPQwgx7gbRWqJbwJSGlFKUaBVN0AdoFkdAkjQagVXV9XV9lChoBmgJaA9DCMjT8gNX0lnAlIaUUpRoFU3QB2gWR0CSQAsN2C/XdX2UKGgGaAloD0MIy2Wjc37TWcCUhpRSlGgVTdAHaBZHQJJAhWuHN5d1fZQoaAZoCWgPQwjwFkhQ/KJdwJSGlFKUaBVN0AdoFkdAkkMd8JD3NHV9lChoBmgJaA9DCIKq0asBTVvAlIaUUpRoFU3QB2gWR0CSSXiVB2OidX2UKGgGaAloD0MIQBL27STTWcCUhpRSlGgVTdAHaBZHQJJNPoW56MR1fZQoaAZoCWgPQwjOOXgmNB1awJSGlFKUaBVN0AdoFkdAklEzpgTh53V9lChoBmgJaA9DCLKfxVIkA13AlIaUUpRoFU3QB2gWR0CSUvGS6lLwdX2UKGgGaAloD0MImPc404QUWsCUhpRSlGgVTdAHaBZHQJJ8HKLbYbt1fZQoaAZoCWgPQwi9w+3QMGdowJSGlFKUaBVN7wZoFkdAkoRuGwiaAnV9lChoBmgJaA9DCNMW1/hMa13AlIaUUpRoFU3QB2gWR0CSiMaHsTnJdX2UKGgGaAloD0MIPq946pEsWsCUhpRSlGgVTdAHaBZHQJKLOv+wTuh1fZQoaAZoCWgPQwjjxFc7ilJZwJSGlFKUaBVN0AdoFkdAkpGHEAHVw3V9lChoBmgJaA9DCEG2LF+XQ2TAlIaUUpRoFU0IBWgWR0CSkdvvjOs1dX2UKGgGaAloD0MIZylZTkKUZ8CUhpRSlGgVTW8GaBZHQJKThF3IMjN1fZQoaAZoCWgPQwikUYGTbbxZwJSGlFKUaBVN0AdoFkdAkpVvS6UaAHV9lChoBmgJaA9DCDvHgOz1ElvAlIaUUpRoFU3QB2gWR0CSmys189fUdX2UKGgGaAloD0MIox03/G5GXcCUhpRSlGgVTdAHaBZHQJLMo287IT51fZQoaAZoCWgPQwjfcB+5NZJZwJSGlFKUaBVN0AdoFkdAktDLV4HHFXV9lChoBmgJaA9DCEiJXdvb0FzAlIaUUpRoFU3QB2gWR0CS0zMDwH7hdX2UKGgGaAloD0MInSrfMxJqXcCUhpRSlGgVTdAHaBZHQJLZeclPact1fZQoaAZoCWgPQwg/4les4UtZwJSGlFKUaBVN0AdoFkdAktnSO7xusXV9lChoBmgJaA9DCMO4G0RrEFnAlIaUUpRoFU3QB2gWR0CS21iZv1lHdX2UKGgGaAloD0MIqwg3GVVNWcCUhpRSlGgVTdAHaBZHQJLdSRKYiPh1fZQoaAZoCWgPQwiA8nfvqC1bwJSGlFKUaBVN0AdoFkdAkuLe2Zy+6HV9lChoBmgJaA9DCG6LMhvkEWDAlIaUUpRoFU3aAmgWR0CS5fRbbDdhdX2UKGgGaAloD0MI4ba28LzUWsCUhpRSlGgVTdAHaBZHQJMT03m3fAN1fZQoaAZoCWgPQwhl/WZiuuhYwJSGlFKUaBVN0AdoFkdAkxgTZlFtsXV9lChoBmgJaA9DCDTbFfpg41zAlIaUUpRoFU3QB2gWR0CTGoWWQfZFdX2UKGgGaAloD0MIxca8jjgOXcCUhpRSlGgVTdAHaBZHQJMg319ORDF1fZQoaAZoCWgPQwghHR7C+A9ZwJSGlFKUaBVN0AdoFkdAkyK6/h2nsXV9lChoBmgJaA9DCL+AXrhzFF3AlIaUUpRoFU3QB2gWR0CTJK76pHZsdX2UKGgGaAloD0MIiZl9HqNnW8CUhpRSlGgVSzBoFkdAkyV9FSbYsnV9lChoBmgJaA9DCE88ZwsITFnAlIaUUpRoFU3QB2gWR0CTKkJXQtz0dX2UKGgGaAloD0MIHVpkO99pW8CUhpRSlGgVTdAHaBZHQJMtSwV0tAd1fZQoaAZoCWgPQwgQd/UqMuhcwJSGlFKUaBVN0AdoFkdAk1ueSGJvYXV9lChoBmgJaA9DCC0kYHR5tFrAlIaUUpRoFU3QB2gWR0CTX+MOPNmldX2UKGgGaAloD0MI1uQpq+kIW8CUhpRSlGgVTdAHaBZHQJNiWGYa5wx1fZQoaAZoCWgPQwh+Oh4zUEBbwJSGlFKUaBVN0AdoFkdAk2jCoS+QEXV9lChoBmgJaA9DCIlgHFw6VVzAlIaUUpRoFU3QB2gWR0CTap1JlJ6IdX2UKGgGaAloD0MI8GlOXmTCWMCUhpRSlGgVTdAHaBZHQJNtmuKXOW11fZQoaAZoCWgPQwgMdsO2Rd1ZwJSGlFKUaBVN0AdoFkdAk3KSJoCdSXV9lChoBmgJaA9DCJVE9kGW+FjAlIaUUpRoFU3QB2gWR0CTddhib2DhdX2UKGgGaAloD0MI8N3mjZO/W8CUhpRSlGgVTdAHaBZHQJOjZylvZRN1fZQoaAZoCWgPQwiWBRN/FNpYwJSGlFKUaBVN0AdoFkdAk6eCvC/Gl3V9lChoBmgJaA9DCPz89+C1klrAlIaUUpRoFU3QB2gWR0CTqfBJI1+BdX2UKGgGaAloD0MIdJoF2h2sW8CUhpRSlGgVTdAHaBZHQJOwMUEgW8B1fZQoaAZoCWgPQwgyzAna5LJcwJSGlFKUaBVN0AdoFkdAk7IOL74zrXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 944, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_walker_v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:928a516617aaf0ba8b00d82fdb42d817cd01089d359385a37a8e69b4ba142671
|
3 |
+
size 170892
|
ppo_walker_v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_walker_v3/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f12c8d83b00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f12c8d83b90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f12c8d83c20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f12c8d83cb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f12c8d83d40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f12c8d83dd0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f12c8d83e60>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f12c8d83ef0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f12c8d83f80>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f12c8d8a050>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f12c8d8a0e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f12c8d5a690>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
24
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
4
|
42 |
+
],
|
43 |
+
"low": "[-1. -1. -1. -1.]",
|
44 |
+
"high": "[1. 1. 1. 1.]",
|
45 |
+
"bounded_below": "[ True True True True]",
|
46 |
+
"bounded_above": "[ True True True True]",
|
47 |
+
"_np_random": null
|
48 |
+
},
|
49 |
+
"n_envs": 8,
|
50 |
+
"num_timesteps": 976536,
|
51 |
+
"_total_timesteps": 10000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": null,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1652297975.3443522,
|
56 |
+
"learning_rate": 0.0001,
|
57 |
+
"tensorboard_log": null,
|
58 |
+
"lr_schedule": {
|
59 |
+
":type:": "<class 'function'>",
|
60 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
61 |
+
},
|
62 |
+
"_last_obs": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAwAAAAAAAHpjkj2zY+O8iANFPd/1grypWT2/Af5APwDWK76v8SK/AACAPwv1jD9ECze+bFtvPwAAAAAAAAAAr/JqPr2dbT6j7nU+PHaCPrZVjj5FjaA+wvu8PkwY7D7BGCI/AACAP9bEFL8jILg8HIswuxQwnz1/vFW/AAAAs0S+2z77/38/AAAAAOanbD9PeG6//+2CPzAGYj8AAIA/N+7iPvaB5T42iu0+FAX8PkWnxT5vuqM+RnmOPjapgD7euIM+ynPYPpwhLb9D9o+6zC/eO/qu4DpLRE6/ABukuLDfFD4BNk0/AAAAAJ5EkT8APLc2RFZvP9VANDoAAIA/w4XbPvkD3j4ZyeU+AwryPrFzuj4Lc5o+QGaGPiq9cj4V6WE+kB24PkOSXz8F95w9K3aTu+cmDb71JB++qqzXPqBABr39/3+/AAAAAF7RkD8AAAAADOXmPgAAgL8AAAAAZCnWPgSY2D6RLOA+3NbtPgC+AT/2WBI/g0MsPwc1Vz8AAIA/AACAP1tmQD7dMQA9wG3YvEbGAz3OnVG/AMATt4itQL65Rn+/AACAPy0+eT/DdIC+GAZsP1VV1bMAAIA/92VwPt0gcz4mo3s+AX2FPv6ikT68RqQ+El7BPmSS8T5l2yU/AACAP/rYfD0vm+874R0uPCYMEr3exVW/gOiYuc6kgD5JQa2+AACAP+NMkT8AgKE3ZJhvP4t72zsAAIA/Gh9gPq+qYj57mWo+d+Z4PqbGhz5PJ5k+aEa0PjA34T7RcVg/AACAPz+EMj6NqqY8Ctw3PM4a/zxZoU6/1k0vv2CCED6kzAI/AACAPxF3dT8EdDe+2BBpP1U+RroAAIA/NXB8PhxOfz6/HoQ+gyyMPkLumD79gKw+UA3LPq2r/T7qKS4/AACAP/63CT4a/kQ9ijqIvIacirxV1VW/ztMVv5CRfb79/3+/AACAPy7ggD/8/3+/1BiCP2D3rD8AAIA/lx9rPifLbT6kHXY+K4+CPupwjj71q6A+4R+9PmxF7D68NyI/TCFdP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsYhpSMAUOUdJRSlC4="
|
65 |
+
},
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
69 |
+
},
|
70 |
+
"_last_original_obs": null,
|
71 |
+
"_episode_num": 0,
|
72 |
+
"use_sde": false,
|
73 |
+
"sde_sample_freq": -1,
|
74 |
+
"_current_progress_remaining": 0.9033344,
|
75 |
+
"ep_info_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEM8SZAQGXMCUhpRSlIwBbJRN0AeMAXSUR0CQj3yzXz19dX2UKGgGaAloD0MIK97IPPLlW8CUhpRSlGgVTdAHaBZHQJCSeaMJhOR1fZQoaAZoCWgPQwhAMEeP3y1awJSGlFKUaBVN0AdoFkdAkJeQWBSUDHV9lChoBmgJaA9DCDJyFva0FVvAlIaUUpRoFUtNaBZHQJCY37Hhjvx1fZQoaAZoCWgPQwjw37w48TxewJSGlFKUaBVN0AdoFkdAkJtp6po9LnV9lChoBmgJaA9DCLA9syRAul3AlIaUUpRoFU3QB2gWR0CQnJshxHXmdX2UKGgGaAloD0MIs++K4H90XMCUhpRSlGgVTdAHaBZHQJCfRQKrq+t1fZQoaAZoCWgPQwgYsrrVc0FawJSGlFKUaBVN0AdoFkdAkJ/F6/qPfnV9lChoBmgJaA9DCB+fkJ23ql3AlIaUUpRoFU3QB2gWR0CQy6mXw9aEdX2UKGgGaAloD0MISguXVdjVXcCUhpRSlGgVTdAHaBZHQJDXjGecx0x1fZQoaAZoCWgPQwiN1eb/VZ5dwJSGlFKUaBVN0AdoFkdAkNqdTYNAknV9lChoBmgJaA9DCLdFmQ0y9V3AlIaUUpRoFU3QB2gWR0CQ4PtjTa0ydX2UKGgGaAloD0MIzR/T2jQoXsCUhpRSlGgVTdAHaBZHQJDjk4ku6Et1fZQoaAZoCWgPQwh4KAr0iWlcwJSGlFKUaBVN0AdoFkdAkOTF6NVBEHV9lChoBmgJaA9DCMMRpFLsn1nAlIaUUpRoFU3QB2gWR0CQ550mMOwxdX2UKGgGaAloD0MIW+ogrwcyXsCUhpRSlGgVTdAHaBZHQJDoLyy2QXB1fZQoaAZoCWgPQwjKb9HJUqtcwJSGlFKUaBVLTmgWR0CQ6SL4etCBdX2UKGgGaAloD0MITUnW4ej+WcCUhpRSlGgVTdAHaBZHQJETnN3W4Ex1fZQoaAZoCWgPQwj+8zRgkIxdwJSGlFKUaBVN0AdoFkdAkR+2SdOIqXV9lChoBmgJaA9DCKcGms+56l3AlIaUUpRoFU3QB2gWR0CRIq6guh9LdX2UKGgGaAloD0MINsgkI2dWXcCUhpRSlGgVTdAHaBZHQJEo65BkZrJ1fZQoaAZoCWgPQwi54Az+ftBZwJSGlFKUaBVN0AdoFkdAkSt2DUVi4XV9lChoBmgJaA9DCH+hR4ye1lvAlIaUUpRoFU3QB2gWR0CRLL8LronsdX2UKGgGaAloD0MISgosgCnDWsCUhpRSlGgVTdAHaBZHQJEwAT8HfMx1fZQoaAZoCWgPQwgkKlQ3F7RcwJSGlFKUaBVN0AdoFkdAkTDYGdI5HXV9lChoBmgJaA9DCP2k2qfjEFzAlIaUUpRoFUtiaBZHQJExuGoJiRZ1fZQoaAZoCWgPQwiiCRSxiHVawJSGlFKUaBVN0AdoFkdAkVu0vK2a2HV9lChoBmgJaA9DCIC3QILiPFrAlIaUUpRoFU3QB2gWR0CRZ6YGt6omdX2UKGgGaAloD0MIZr0YyomUXcCUhpRSlGgVTdAHaBZHQJFqktQKrrB1fZQoaAZoCWgPQwiHF0SkpuNZwJSGlFKUaBVN0AdoFkdAkXDtWyTpxHV9lChoBmgJaA9DCJi/QubKSlrAlIaUUpRoFU3QB2gWR0CRc4VT72tddX2UKGgGaAloD0MIGLK61XNhWsCUhpRSlGgVTdAHaBZHQJF0u/WUbDN1fZQoaAZoCWgPQwjP86eN6nFdwJSGlFKUaBVN0AdoFkdAkXizohY/3XV9lChoBmgJaA9DCMyYgjXO5lnAlIaUUpRoFU3QB2gWR0CReY8/lhgFdX2UKGgGaAloD0MIrizRWWb4XMCUhpRSlGgVTdAHaBZHQJGjbJPqLTB1fZQoaAZoCWgPQwgvMZbpF1xiwJSGlFKUaBVNIARoFkdAkatAQg9vCXV9lChoBmgJaA9DCEKwql5+YV3AlIaUUpRoFU3QB2gWR0CRr1tPHktFdX2UKGgGaAloD0MIdLaA0Hp+W8CUhpRSlGgVTdAHaBZHQJGyZ/hESdx1fZQoaAZoCWgPQwhN9WT+0R1bwJSGlFKUaBVN0AdoFkdAkbjBQN0/4nV9lChoBmgJaA9DCAHfbd44nlvAlIaUUpRoFU3QB2gWR0CRvJEl3QlbdX2UKGgGaAloD0MIehhanZz5W8CUhpRSlGgVTdAHaBZHQJHAn4L1EmZ1fZQoaAZoCWgPQwhgdk8eFqJawJSGlFKUaBVN0AdoFkdAkcGA5myxA3V9lChoBmgJaA9DCLcKYqBrRlzAlIaUUpRoFUs1aBZHQJHCYOy3TeB1fZQoaAZoCWgPQwixiGGHsZJlwJSGlFKUaBVN1AVoFkdAkespPIn0CnV9lChoBmgJaA9DCL4vLlVpv1nAlIaUUpRoFU3QB2gWR0CR67fWcz68dX2UKGgGaAloD0MIATCeQUPaW8CUhpRSlGgVTdAHaBZHQJH3/ttygf51fZQoaAZoCWgPQwjbFI+L6klgwJSGlFKUaBVNBwNoFkdAkfh6UeMho3V9lChoBmgJaA9DCP5/nDBhklnAlIaUUpRoFU3QB2gWR0CR+vlFMIu5dX2UKGgGaAloD0MIpFLsaBzXWcCUhpRSlGgVTdAHaBZHQJIBa717IDJ1fZQoaAZoCWgPQwh5Wn7gKpldwJSGlFKUaBVN0AdoFkdAkgUbHp8neHV9lChoBmgJaA9DCBIwurw5jFrAlIaUUpRoFU3QB2gWR0CSCThrWRRudX2UKGgGaAloD0MIntMs0O6jXcCUhpRSlGgVTdAHaBZHQJIK80elsP91fZQoaAZoCWgPQwgx7gbRWqJbwJSGlFKUaBVN0AdoFkdAkjQagVXV9XV9lChoBmgJaA9DCMjT8gNX0lnAlIaUUpRoFU3QB2gWR0CSQAsN2C/XdX2UKGgGaAloD0MIy2Wjc37TWcCUhpRSlGgVTdAHaBZHQJJAhWuHN5d1fZQoaAZoCWgPQwjwFkhQ/KJdwJSGlFKUaBVN0AdoFkdAkkMd8JD3NHV9lChoBmgJaA9DCIKq0asBTVvAlIaUUpRoFU3QB2gWR0CSSXiVB2OidX2UKGgGaAloD0MIQBL27STTWcCUhpRSlGgVTdAHaBZHQJJNPoW56MR1fZQoaAZoCWgPQwjOOXgmNB1awJSGlFKUaBVN0AdoFkdAklEzpgTh53V9lChoBmgJaA9DCLKfxVIkA13AlIaUUpRoFU3QB2gWR0CSUvGS6lLwdX2UKGgGaAloD0MImPc404QUWsCUhpRSlGgVTdAHaBZHQJJ8HKLbYbt1fZQoaAZoCWgPQwi9w+3QMGdowJSGlFKUaBVN7wZoFkdAkoRuGwiaAnV9lChoBmgJaA9DCNMW1/hMa13AlIaUUpRoFU3QB2gWR0CSiMaHsTnJdX2UKGgGaAloD0MIPq946pEsWsCUhpRSlGgVTdAHaBZHQJKLOv+wTuh1fZQoaAZoCWgPQwjjxFc7ilJZwJSGlFKUaBVN0AdoFkdAkpGHEAHVw3V9lChoBmgJaA9DCEG2LF+XQ2TAlIaUUpRoFU0IBWgWR0CSkdvvjOs1dX2UKGgGaAloD0MIZylZTkKUZ8CUhpRSlGgVTW8GaBZHQJKThF3IMjN1fZQoaAZoCWgPQwikUYGTbbxZwJSGlFKUaBVN0AdoFkdAkpVvS6UaAHV9lChoBmgJaA9DCDvHgOz1ElvAlIaUUpRoFU3QB2gWR0CSmys189fUdX2UKGgGaAloD0MIox03/G5GXcCUhpRSlGgVTdAHaBZHQJLMo287IT51fZQoaAZoCWgPQwjfcB+5NZJZwJSGlFKUaBVN0AdoFkdAktDLV4HHFXV9lChoBmgJaA9DCEiJXdvb0FzAlIaUUpRoFU3QB2gWR0CS0zMDwH7hdX2UKGgGaAloD0MInSrfMxJqXcCUhpRSlGgVTdAHaBZHQJLZeclPact1fZQoaAZoCWgPQwg/4les4UtZwJSGlFKUaBVN0AdoFkdAktnSO7xusXV9lChoBmgJaA9DCMO4G0RrEFnAlIaUUpRoFU3QB2gWR0CS21iZv1lHdX2UKGgGaAloD0MIqwg3GVVNWcCUhpRSlGgVTdAHaBZHQJLdSRKYiPh1fZQoaAZoCWgPQwiA8nfvqC1bwJSGlFKUaBVN0AdoFkdAkuLe2Zy+6HV9lChoBmgJaA9DCG6LMhvkEWDAlIaUUpRoFU3aAmgWR0CS5fRbbDdhdX2UKGgGaAloD0MI4ba28LzUWsCUhpRSlGgVTdAHaBZHQJMT03m3fAN1fZQoaAZoCWgPQwhl/WZiuuhYwJSGlFKUaBVN0AdoFkdAkxgTZlFtsXV9lChoBmgJaA9DCDTbFfpg41zAlIaUUpRoFU3QB2gWR0CTGoWWQfZFdX2UKGgGaAloD0MIxca8jjgOXcCUhpRSlGgVTdAHaBZHQJMg319ORDF1fZQoaAZoCWgPQwghHR7C+A9ZwJSGlFKUaBVN0AdoFkdAkyK6/h2nsXV9lChoBmgJaA9DCL+AXrhzFF3AlIaUUpRoFU3QB2gWR0CTJK76pHZsdX2UKGgGaAloD0MIiZl9HqNnW8CUhpRSlGgVSzBoFkdAkyV9FSbYsnV9lChoBmgJaA9DCE88ZwsITFnAlIaUUpRoFU3QB2gWR0CTKkJXQtz0dX2UKGgGaAloD0MIHVpkO99pW8CUhpRSlGgVTdAHaBZHQJMtSwV0tAd1fZQoaAZoCWgPQwgQd/UqMuhcwJSGlFKUaBVN0AdoFkdAk1ueSGJvYXV9lChoBmgJaA9DCC0kYHR5tFrAlIaUUpRoFU3QB2gWR0CTX+MOPNmldX2UKGgGaAloD0MI1uQpq+kIW8CUhpRSlGgVTdAHaBZHQJNiWGYa5wx1fZQoaAZoCWgPQwh+Oh4zUEBbwJSGlFKUaBVN0AdoFkdAk2jCoS+QEXV9lChoBmgJaA9DCIlgHFw6VVzAlIaUUpRoFU3QB2gWR0CTap1JlJ6IdX2UKGgGaAloD0MI8GlOXmTCWMCUhpRSlGgVTdAHaBZHQJNtmuKXOW11fZQoaAZoCWgPQwgMdsO2Rd1ZwJSGlFKUaBVN0AdoFkdAk3KSJoCdSXV9lChoBmgJaA9DCJVE9kGW+FjAlIaUUpRoFU3QB2gWR0CTddhib2DhdX2UKGgGaAloD0MI8N3mjZO/W8CUhpRSlGgVTdAHaBZHQJOjZylvZRN1fZQoaAZoCWgPQwiWBRN/FNpYwJSGlFKUaBVN0AdoFkdAk6eCvC/Gl3V9lChoBmgJaA9DCPz89+C1klrAlIaUUpRoFU3QB2gWR0CTqfBJI1+BdX2UKGgGaAloD0MIdJoF2h2sW8CUhpRSlGgVTdAHaBZHQJOwMUEgW8B1fZQoaAZoCWgPQwgyzAna5LJcwJSGlFKUaBVN0AdoFkdAk7IOL74zrXVlLg=="
|
78 |
+
},
|
79 |
+
"ep_success_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
82 |
+
},
|
83 |
+
"_n_updates": 944,
|
84 |
+
"n_steps": 2048,
|
85 |
+
"gamma": 0.999,
|
86 |
+
"gae_lambda": 0.95,
|
87 |
+
"ent_coef": 0.001,
|
88 |
+
"vf_coef": 0.5,
|
89 |
+
"max_grad_norm": 0.5,
|
90 |
+
"batch_size": 128,
|
91 |
+
"n_epochs": 16,
|
92 |
+
"clip_range": {
|
93 |
+
":type:": "<class 'function'>",
|
94 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
95 |
+
},
|
96 |
+
"clip_range_vf": null,
|
97 |
+
"normalize_advantage": true,
|
98 |
+
"target_kl": null
|
99 |
+
}
|
ppo_walker_v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:744f8651babcdcc855c2393692d2a9246277ff9a0e45043d2eecffb6e8319bf3
|
3 |
+
size 101783
|
ppo_walker_v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4675ea1ffe0242d575de1bd1a202fd269ffc3c56472fbe0273c16bbf7dea21ae
|
3 |
+
size 51710
|
ppo_walker_v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_walker_v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14a32c010d81cfffc7742533eb989ebde290ac4b11eedd9296b0955460127c4e
|
3 |
+
size 115400
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -23.486342612890986, "std_reward": 10.276332727267262, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T19:59:58.534592"}
|