{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4af41fd480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4af41fd510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4af41fd5a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4af41fd630>", "_build": "<function ActorCriticPolicy._build at 0x7d4af41fd6c0>", "forward": "<function ActorCriticPolicy.forward at 0x7d4af41fd750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4af41fd7e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4af41fd870>", "_predict": "<function ActorCriticPolicy._predict at 0x7d4af41fd900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4af41fd990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4af41fda20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4af41fdab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4af41a3d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702066051524799768, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD01TxFDSA+BUUdPXw7W76ZRgY8RooOvQAAAAAAAAAA8xfOPWdB2z7W24G+1n2vvhMDk7xyUpI8AAAAAAAAAAAAMiS9HINivPr0sTwdoB89sajIvaL0/T0AAIA/AACAPwC+Gzx3Zwc+UPe+vay5ib6ojpK8MDZuvAAAAAAAAAAAJjs5vsbYXz9+iT2+ySIXvxZDq74ql7W7AAAAAAAAAAC6sho+QEKUP+pFEz+NpQa/L9NhPreDtj4AAAAAAAAAAGZYYrxckyq6F1eSOkrn0TUrCTc6I9GouQAAgD8AAIA/GqpgvR8ZursV7us71ZWTPAOZCL0e1Hk9AACAPwAAgD8aags9SHOwPwaLUz4kOJS+OJtaurOrwjwAAAAAAAAAAJpt7LtPhDu8mmi3veq1C7324ci8gC1EvQAAgD8AAIA/ZsTnvClQZrpw5aa0esq6rvofArpRboozAACAPwAAgD9dUme+P+Q6P15dvb2iq+K+YhiWvhUisj0AAAAAAAAAADOOTb3p/RO8Noc3Pa6m1r1TmVO8zTpLvQAAgD8AAIA/TTJ8Pd/lqT4V9Yy+jPC+vkf+vL1sDoy9AAAAAAAAAAAzGkk9Uh33PrDXPD1WYJG+R6/fPYBbKbwAAAAAAAAAAG23Rz7QWYs/xgtwPhIB9b4UgpE+1nZlvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC//FR51NiMAWyUS+WMAXSUR0C6SctdJJ5FdX2UKGgGR0Bxgh//echDaAdNNwFoCEdAuknObQTmGXV9lChoBkdAcHJtdzGPxWgHS/1oCEdAukngk5ZKWnV9lChoBkdAcyt5AyEcsGgHS/1oCEdAukoZaB7NS3V9lChoBkdAU0DGZNO/L2gHS7doCEdAukogrDqGDnV9lChoBkdAcz7N4Z/CqWgHS/JoCEdAukpPKU3XI3V9lChoBkdAcrQrWiDdxmgHS/loCEdAukpfKuB+WnV9lChoBkdAcAPsBQvYe2gHTQQBaAhHQLpKZ9pyp711fZQoaAZHQHABedK/VRVoB0vqaAhHQLpKdGNJe3R1fZQoaAZHQHD1fmDDjzZoB0vZaAhHQLpKfbPyCnR1fZQoaAZHQHKFQPEsJ6ZoB0viaAhHQLpKv8qWkad1fZQoaAZHQHI0h7E5yU9oB00IAWgIR0C6StoZydWidX2UKGgGR0BzdQNx2jfvaAdL9mgIR0C6SuFBlcyFdX2UKGgGR0BxuxJxvNu+aAdL2mgIR0C6SvBRVIZqdX2UKGgGR0BwUhT6zmfXaAdL6mgIR0C6SxxmTTvzdX2UKGgGR0Bvsgckt29taAdL3mgIR0C6S3M9wFTvdX2UKGgGR0AwRI8yN4qxaAdLt2gIR0C6S4vexfOVdX2UKGgGR0Bxthy4nWrfaAdL+2gIR0C6S5dKqXF+dX2UKGgGR0Bvt0Uh3aBaaAdL6WgIR0C6S60ofCAMdX2UKGgGR0BzCC/etSydaAdL9WgIR0C6S7HQID5kdX2UKGgGR0ByoIu+RHPNaAdL4mgIR0C6S+qesgdPdX2UKGgGR0BwJ/GQ0XP7aAdL52gIR0C6TGC8SPELdX2UKGgGR0BypsgLZzxPaAdL/mgIR0C6THpAhStOdX2UKGgGR0BypS6cy31BaAdL62gIR0C6TIsguAZsdX2UKGgGR0BuyyzE74i5aAdNAwFoCEdAukyaDoQnQnV9lChoBkdAcYEW5paibmgHS+toCEdAukzzM8ox6HV9lChoBkdAUvdSsKb8WWgHS59oCEdAuk0hO2y9mHV9lChoBkdAcwtsSCe2/mgHTSgBaAhHQLpNI19v0iB1fZQoaAZHQHE+RpYcNpdoB0v4aAhHQLpNXVpsXSB1fZQoaAZHQHE9HSjQAuJoB00HAWgIR0C6TXWJBPbgdX2UKGgGR0BxmLuy/sVtaAdL+GgIR0C6TZAFTvRadX2UKGgGR0Bw+AONHYpVaAdL2WgIR0C6Tcb6Hj6vdX2UKGgGR0BtxFfLLZBcaAdL6mgIR0C6TczTF2mpdX2UKGgGR0BvhEqrilzmaAdL5GgIR0C6U9oOtnwodX2UKGgGR0Byt64c3l0YaAdL/2gIR0C6U994mkWRdX2UKGgGR0BzCmLS/j82aAdNeQFoCEdAulQdQm/nGXV9lChoBkdAb/JSBK+SKWgHS81oCEdAulQe6g/Ts3V9lChoBkdAc1nCtA9mpWgHS+VoCEdAulQ6ErXlKnV9lChoBkdAcWkjoZAIIGgHS+hoCEdAulRcEq2BrnV9lChoBkdAcqRT6SDAamgHS/NoCEdAulR9O45LiHV9lChoBkdAUS89GI9C/2gHS7VoCEdAulSUhfShJ3V9lChoBkdAcJjBBAv+O2gHS/xoCEdAulTQwwj+rHV9lChoBkdAcMHqcEvCdmgHS+xoCEdAulTSebutwXV9lChoBkdAcWvuKXOW0WgHTQkBaAhHQLpVCMmWt2d1fZQoaAZHQHPZiV8kUsZoB0vfaAhHQLpVMu3c5811fZQoaAZHQHGyvCdjG1hoB00PAWgIR0C6VVFoYekpdX2UKGgGR0BzM2anaWX1aAdNAQFoCEdAulV2sKb8WXV9lChoBkdAdAbVk+X7cmgHTRsBaAhHQLpVgHXEqDt1fZQoaAZHQHKsNkOI68xoB0vfaAhHQLpVilxOtXB1fZQoaAZHQHL/dkrf+CNoB03uAWgIR0C6Vao33pOfdX2UKGgGR0BxZ4NYr8R+aAdL/WgIR0C6VcZUgjhUdX2UKGgGR0ByUq3lS0jUaAdL52gIR0C6VdYMKCxvdX2UKGgGR0BvnwqgAZKnaAdNAQFoCEdAulYIX531SXV9lChoBkdAczHlYU34sWgHS/RoCEdAulYKURnOB3V9lChoBkdAbOfucc2itmgHS+9oCEdAulYjUoa1kXV9lChoBkdAcC+97WuoxmgHTQABaAhHQLpWYKzAvct1fZQoaAZHQHDg4Nd7fHhoB0vdaAhHQLpWbL7Gecx1fZQoaAZHQG+iZZjhDPZoB00DAWgIR0C6VrkvGp++dX2UKGgGR0Byy9ikO7QLaAdNJQFoCEdAula8I+nqFHV9lChoBkdAczLxYq5LAmgHS/RoCEdAulbSuzQeFXV9lChoBkdAbx1xvvSc9WgHS9poCEdAulbpEw35vnV9lChoBkdAcL76HTI/7mgHS/RoCEdAulb31M/QjXV9lChoBkdAcvyPU8V58mgHS91oCEdAulcO/20zCXV9lChoBkdAcx6fIjnmrGgHS+JoCEdAulcnkyULUnV9lChoBkdAchF2XLNfPWgHS9ZoCEdAulcvvsqrinV9lChoBkdAcHq7gsK9f2gHS+5oCEdAulcw8jiXIHV9lChoBkdAc7DDU3GXHGgHS9FoCEdAuldOFTNt7HV9lChoBkdAcU7Z3cHnlmgHS+FoCEdAuldb+BH09XV9lChoBkdAc25gdfb9ImgHS/ZoCEdAule5nqVyFXV9lChoBkdAcIJG0eEIxGgHTQUBaAhHQLpX2gn+hoN1fZQoaAZHQHOslFH8TBZoB00OAWgIR0C6WALDIikgdX2UKGgGR0Bw6JRyfcveaAdL8WgIR0C6WA9A9mpVdX2UKGgGR0BznT1ct5D7aAdL0WgIR0C6WD+De0ojdX2UKGgGR0ByaTqcEvCeaAdNBwFoCEdAulhECq6vq3V9lChoBkdAbx9XXiBGx2gHS+5oCEdAulhftQbdanV9lChoBkdAbn3ie/YapGgHS+loCEdAuliD8EV32XV9lChoBkdAcz8KsdT5wmgHTREBaAhHQLpYoMj/uLJ1fZQoaAZHQHJgSNfgJkZoB0vcaAhHQLpYsSBshxJ1fZQoaAZHQHLFa0pmVZ9oB0v5aAhHQLpYtcsDnvF1fZQoaAZHQHFCgD/2kBVoB0vuaAhHQLpY1V7hNud1fZQoaAZHQHQiUQoTfzloB00QAWgIR0C6WRJY5ksjdX2UKGgGR0BwNC94/u9faAdNAgFoCEdAulkZ9y925nV9lChoBkdAcPy1NQCSzWgHTQ8BaAhHQLpZQVPN3W51fZQoaAZHQHMwj2nKnvVoB01CAWgIR0C6WUmBe5WjdX2UKGgGR0Bw9qXOW0JGaAdL9GgIR0C6WXMnJDE4dX2UKGgGR0BzbA6ySmqHaAdL8WgIR0C6WYze40/GdX2UKGgGR0Bxs3l3hXKbaAdL3WgIR0C6WZ6N2ki2dX2UKGgGR0BvRlKK508vaAdL22gIR0C6WdD+m3vydX2UKGgGR0BzBHMA3kxRaAdL32gIR0C6WdoESuhcdX2UKGgGR0BwO16v7m+1aAdNBgFoCEdAulne+RHPNXV9lChoBkdAUmL6BRQ792gHS6xoCEdAulnl3yI553V9lChoBkdAc6TO+ZgG8mgHS+ZoCEdAuln/r1M/QnV9lChoBkdAcUi/FBIFvGgHS/NoCEdAulo066reZXV9lChoBkdAc1LGnGbTdGgHS99oCEdAulo9+MIeHXV9lChoBkdAcvH850bLlmgHS/5oCEdAulpe7yxzJnV9lChoBkdAboKP1ct5EGgHTQMBaAhHQLpaw5dGAkN1fZQoaAZHQG/IZ00WM0hoB0vnaAhHQLpa4jgAIY51fZQoaAZHQHFZgSeyzHFoB0vraAhHQLpa4phWo3t1fZQoaAZHQHF0Q7kn1FpoB0vlaAhHQLpbHBSUC7t1fZQoaAZHQHGQ2mtQsPJoB0vUaAhHQLpbLg+yJKt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |