Second commit from LunarLander practice in HF RL course
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 125.95 +/- 59.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ec3641aa320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec3641aa3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec3641aa440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec3641aa4d0>", "_build": "<function ActorCriticPolicy._build at 0x7ec3641aa560>", "forward": "<function ActorCriticPolicy.forward at 0x7ec3641aa5f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec3641aa680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec3641aa710>", "_predict": "<function ActorCriticPolicy._predict at 0x7ec3641aa7a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec3641aa830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec3641aa8c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec3641aa950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ec3641498c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702057413676570763, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrJHD0URIe6NtacOjGYsTVYBZC6bq22uQAAgD8AAIA/c6apPfakZ7rJ+oE6ySmpNFLjujXoEZe5AACAPwAAAADNE7697MH6uSuoerZsg6Sx1bYSu442mTUAAIA/AACAP41UkT0U9Jq6BrBPuU1eP7RyJqI69s9vOAAAgD8AAIA/M3EivYVjurlpScQ2mt7GMSftUrsm2/C1AACAPwAAgD9AE7A9D0tLvPMR2bz+b1E8OkyyvYrLKj0AAIA/AAAAAIAkuD0pMA66+bo1u5VbYLYa6Yu7Mw1XOgAAAAAAAIA/YJ4OPmvYkD9P5DU/yRImv0/goD2bV2Q+AAAAAAAAAACaY209T0BHPpPqjb2W9ku+eHwNPPvNnTsAAAAAAAAAADOHDbxI2ZK6iW4ruTomHLTKCPW6O7hGOAAAgD8AAIA/ZvCFva6tirq9IJM35KC8MjybhzrQqam2AACAPwAAgD9z4Zw9Bh2TP18Mgz6Bzvm+CHbEPQahwD0AAAAAAAAAACPJiT7IbNk+QcgYvkzdlL4iyt4982jPvQAAAAAAAAAAGm9avRXEqD9aLKi+HRrPvs2qqL023Xm+AAAAAAAAAAAzIwG8rjWWupqSxrcLcJWy9J3guM2m5DYAAIA/AACAP1omUb4bEaG8zbRRu/kfoLnb+A4+cKp8OgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGU89fkWAPOMAWyUTegDjAF0lEdAlQKtGViWmnV9lChoBkdAX/72wmmcfGgHTegDaAhHQJUCyxRl6JJ1fZQoaAZHQGR8FS0jTrpoB03oA2gIR0CVBnLc9GI9dX2UKGgGR0BifGOCGvfTaAdN6ANoCEdAlRF8SGrS3XV9lChoBkdAXmmxB3RoiGgHTegDaAhHQJUSuioKlYV1fZQoaAZHQF2dO3UhFE1oB03oA2gIR0CVFpJ3gUDddX2UKGgGR0BjUeITGo73aAdN6ANoCEdAlRqJrtVrAXV9lChoBkdAZTKS9M9KVmgHTegDaAhHQJUbXkU9IPN1fZQoaAZHQGSyARkEs8RoB03oA2gIR0CVG9VxjriVdX2UKGgGR0BjvZw84gieaAdN6ANoCEdAlRxgCjk+5nV9lChoBkdAZLBfuTibUmgHTegDaAhHQJUcn05EMLF1fZQoaAZHQGcoZ1V5rxloB03oA2gIR0CVIQjy4FzNdX2UKGgGR0Bo8epZOi35aAdN6ANoCEdAlTWrHdXT3XV9lChoBkdATrMq6OHWSWgHS75oCEdAlTZkAPuognV9lChoBkdAYyxwpe/pMmgHTegDaAhHQJU/8gvDgqF1fZQoaAZHQGAWiX6ZYxNoB03oA2gIR0CVQCDA8B+4dX2UKGgGR0Bmxl/jKgZkaAdN6ANoCEdAlUKNnscABHV9lChoBkdAZwCxA0Kqn2gHTegDaAhHQJVKXZ7HAAR1fZQoaAZHQF9COLBKtgdoB03oA2gIR0CVSn5VOsT4dX2UKGgGR0BKoQjD8+A3aAdLwmgIR0CVTb6IWP92dX2UKGgGR0BkC+kLx7RfaAdN6ANoCEdAlU6B3u/lAHV9lChoBkdAULVZU1hsqWgHS8FoCEdAlVhZYYBNmHV9lChoBkdAZZpeaa1CxGgHTegDaAhHQJVZkbR4QjF1fZQoaAZHQFv0Ym9g4OtoB03oA2gIR0CVWtDqGDcudX2UKGgGR0BmgIS8J2MbaAdN6ANoCEdAlV5+27Wd3HV9lChoBkdAYiI9U0elsWgHTegDaAhHQJVkUq/dqL11fZQoaAZHQGYiS3Td+G5oB03oA2gIR0CVZPfOD8LsdX2UKGgGR0Bi671f3N9qaAdN6ANoCEdAlWXHZ5AyEnV9lChoBkdAZ1Ln5i3G42gHTegDaAhHQJVmI9s7+1l1fZQoaAZHQGE3XhwVCX1oB03oA2gIR0CVbMdFfAsTdX2UKGgGR0BnO1zbN8mbaAdN6ANoCEdAlW6Kk690zXV9lChoBkdAZS+3rleWwGgHTegDaAhHQJVvF35eqrB1fZQoaAZHQG/CGMn7YTVoB02qAWgIR0CVg8yk9ECvdX2UKGgGR0ByU+7Wd3B6aAdNKAFoCEdAlYcNZid8RnV9lChoBkdAZX/idat9yGgHTegDaAhHQJWIm0ojOcF1fZQoaAZHQGHgod2gWadoB03oA2gIR0CViMEX+ERKdX2UKGgGR0BIjrs0HhS+aAdLuWgIR0CViM7IDHOsdX2UKGgGR0BQyZlnRLK3aAdLymgIR0CViQZ5AyEddX2UKGgGR0Bka9XNke6qaAdN6ANoCEdAlZFLf1pTM3V9lChoBkdAYS3TMJQcgmgHTegDaAhHQJWRZ+MIeHV1fZQoaAZHQEZICJ40Mw1oB0vFaAhHQJWSd7u2JBR1fZQoaAZHQFBytGd7OVxoB0vVaAhHQJWSzqgRK6F1fZQoaAZHQGTtFxffGdZoB03oA2gIR0CVlP5CF9KFdX2UKGgGR0BxIPqzJIUbaAdNPANoCEdAlZVjdpItlXV9lChoBkdAUvl0o0ALiWgHS7NoCEdAlaFp/Tb35HV9lChoBkdAaMRNCZ4Oc2gHTegDaAhHQJWiaDCgsbx1fZQoaAZHQHJpJpBX0XhoB00sAmgIR0CVpxo1UEPldX2UKGgGR0BevJ5E+gUUaAdN6ANoCEdAlaiNAood/HV9lChoBkdAb/v1EE1VHWgHTcoDaAhHQJWsI5WBBiV1fZQoaAZHQGeMtQKrq+toB03oA2gIR0CVrRZOBUaRdX2UKGgGR0Bjn/7WNFSbaAdN6ANoCEdAla4qTfR/mXV9lChoBkdAaWpnCfpUxWgHTegDaAhHQJWzqt5le4V1fZQoaAZHQGOt3Sro4dZoB03oA2gIR0CVysUs4DLbdX2UKGgGR0BjeKZjQRf4aAdN6ANoCEdAldGOWSlnAnV9lChoBkdAZihS3LFGX2gHTegDaAhHQJXRoAWBSUF1fZQoaAZHQHC2pIQOFxpoB00PAmgIR0CV1ySvC/GmdX2UKGgGR0BwZhUkv9LpaAdNdANoCEdAldtGWldka3V9lChoBkdAZ1eRU3n6mGgHTegDaAhHQJXdn/Lkjop1fZQoaAZHQEqmhRIjGDNoB0u1aAhHQJXduLyc0+F1fZQoaAZHQGGJvDHfdh1oB03oA2gIR0CV3boegctHdX2UKGgGR0BmLFDF6zE8aAdN6ANoCEdAld6lBUrCnHV9lChoBkdAZK6KNQ0oB2gHTegDaAhHQJXe7/dZaFF1fZQoaAZHQGRxEDyOJchoB03oA2gIR0CV6WrCFbmmdX2UKGgGR0Bj3rGJemelaAdN6ANoCEdAleoj/dZaFHV9lChoBkdAZIm4rjHXE2gHTegDaAhHQJXto83dbgV1fZQoaAZHQHJjoSQHRkVoB02MAWgIR0CV7iDIikftdX2UKGgGR0BxrqM6zVtoaAdNfQFoCEdAle+AOrhisnV9lChoBkdAYzaE12q1gGgHTegDaAhHQJXyGpYLb6B1fZQoaAZHQGUsA8SwnploB03oA2gIR0CV8vfvnbItdX2UKGgGR0BkrFpEhJRPaAdN6ANoCEdAlfP46XBxgnV9lChoBkdAZkh336AOKGgHTegDaAhHQJX4/Yf4h2Z1fZQoaAZHQGyw+AEt/WloB01TAWgIR0CV/QLQXyiFdX2UKGgGR0BswgxagVXWaAdNswFoCEdAlf2OI68xsXV9lChoBkdAZBoza9K28mgHTegDaAhHQJYSSG34Kx91fZQoaAZHQHLf0Pxx1gZoB02kAWgIR0CWFHh11W8zdX2UKGgGR0BvFEpCrtE5aAdN9QFoCEdAlhSEg0TDfnV9lChoBkdAcRAiH6/IsGgHTSkDaAhHQJYV5bOeJ551fZQoaAZHQHAD4C6pYLdoB00SA2gIR0CWFeYOlO45dX2UKGgGR0BlFNEiMYMwaAdN6ANoCEdAlhZLZvkzXXV9lChoBkdAcMgKQq7ROWgHTUEDaAhHQJYW1FCswL51fZQoaAZHQGVZC6xxDLNoB03oA2gIR0CWGPst03fidX2UKGgGR0BxZ5dB0IToaAdN3gFoCEdAlhqRH09QoHV9lChoBkdAcJblk6Lfk2gHTR0CaAhHQJYeF/rjYI11fZQoaAZHQGh2LvCuU2VoB03oA2gIR0CWHkXMyJsPdX2UKGgGR0Bul2j2zv7WaAdNDAFoCEdAliBE5EMLGHV9lChoBkdAcN84VymygWgHTVEBaAhHQJYhumixmkF1fZQoaAZHQG3xCmEXcg1oB000AmgIR0CWI8lo11nvdX2UKGgGR0Bw2EhllK9PaAdNmAFoCEdAliSQqI7/43V9lChoBkdAcMuFt8/lhmgHTXwDaAhHQJYoYt/WlM11fZQoaAZHQEbMi0OVgQZoB0vZaAhHQJYpLdKujh11fZQoaAZHQHMFywwCbMJoB00KAmgIR0CWKzdZaFEidX2UKGgGR0BwVRm03Ov/aAdNowJoCEdAlivibhFVk3V9lChoBkdAcZTdupCKJmgHTdwDaAhHQJYvKzyBkI51fZQoaAZHQHFzmNrCWNZoB007AmgIR0CWMNjT8YQ8dX2UKGgGR0BvJs7GNrCWaAdN1AFoCEdAljHw+lj3EnV9lChoBkdAcNNjDsMRYmgHTfMCaAhHQJY06cjJMg51fZQoaAZHQHKkFCkXUH9oB02jAmgIR0CWN0ZuQ6p6dX2UKGgGR0BiJA/5ckdFaAdN6ANoCEdAljt/AwfyPXV9lChoBkdAb1kso2GZeGgHTQgCaAhHQJY78JokAxV1fZQoaAZHQHJHAhB7eEZoB02vAWgIR0CWPDvq1PWQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d4af41fd480>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4af41fd510>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4af41fd5a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4af41fd630>", "_build": "<function ActorCriticPolicy._build at 0x7d4af41fd6c0>", "forward": "<function ActorCriticPolicy.forward at 0x7d4af41fd750>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4af41fd7e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4af41fd870>", "_predict": "<function ActorCriticPolicy._predict at 0x7d4af41fd900>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4af41fd990>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4af41fda20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4af41fdab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d4af41a3d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702061624675331263, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbuAj+20m89wI2RvXmXR7117jY8o4gzvQAAAAAAAAAAmkIWPsOEHztA2742kurdMykGrDzW2+K1AACAPwAAgD+T8QI/i7V+PxngEj5LQA6+Luw6Pfa5GzwAAAAAAAAAAAMa1z5UJog/IkJCPjST+r10gpA96Q0fOwAAAAAAAAAAWtlAP4lNoz6NwT26NZSouJtzOT6TJW45AACAPwAAgD+qGYS+ErUxPj5Dt70ZPZq9rGKJvNUS6jsAAAAAAAAAAKafZD/vUFQ+I4nqvX4aFb6CJxw7U4jfuwAAAAAAAAAA6K8LP9qmP716hLm7tNuRPNPfAL+GmkU9AACAPwAAgD+qHxi/K7QXP3LrDb7d/K695XnvvJVkcD0AAAAAAAAAABUOlb5rNDU/N1+HvX9/Gr4niOu87K6mvQAAAAAAAAAA5vVSPniq1jyvsUy5sUMJuKeNcD4oepI4AACAPwAAgD/zPam9sEAoP3wVwr09+Sa+bpCrvJe7Nz0AAAAAAAAAADr2Jr5m+qQ/7ToSv+a2jL553iK+rlGovQAAAAAAAAAAAxqPPh/+mj8Q8Pw+IsnsvYpdAj4Y9l+9AAAAAAAAAACwr2y+BZ8lPrpSAb5LfSq+D7wpvfIfkTwAAAAAAAAAACbhCT/QLS0/W4haPSQnB75UGK087xUOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE9i2jwhGH6MAWyUTegDjAF0lEdAqHgZ5ooNNXV9lChoBkdAaUk5zYEns2gHTV0CaAhHQKh4uqQzUI91fZQoaAZHQGXfsWfseGRoB01sAmgIR0CoeTLlV94NdX2UKGgGR0Bq0/ZGrjo7aAdNGQJoCEdAqHpfWDpTuXV9lChoBkdAaHz/CqIacmgHTZoCaAhHQKh/Xbu+h5B1fZQoaAZHQGnzfCZWq95oB038AWgIR0Cof3NCJGe+dX2UKGgGR8BUT+8Gs3hoaAdNEwJoCEdAqIC68vmHQHV9lChoBkdAZWujBVMmGGgHTfsCaAhHQKiDhirksBh1fZQoaAZHQGGzN/4IrvtoB03ZAmgIR0CohSEBjnV5dX2UKGgGR8BUt8Zk078vaAdNuwFoCEdAqIeH5xiobXV9lChoBkdAQS1E9dNWVGgHTegDaAhHQKiHwEAYHgR1fZQoaAZHQGWV4/FBIFxoB00tAmgIR0Coh9P4dp7DdX2UKGgGR0Bnj0ejmCAdaAdNLAJoCEdAqIqQ9TxXn3V9lChoBkfATETADaGpM2gHTRABaAhHQKiNCDvmYBx1fZQoaAZHQGTBHlwLmZFoB01BAmgIR0CojfMG5c1PdX2UKGgGR0BnO37xd6cBaAdNIAJoCEdAqI71PacqfHV9lChoBkdAYjPw+dK/VWgHTQcDaAhHQKiRjUPxx1h1fZQoaAZHQGHvzWPLgXNoB03MAmgIR0Cokd+pn6EbdX2UKGgGR8BUA2q1gH/taAdNFgJoCEdAqJKRmwqy4XV9lChoBkdAQmk2Hck+o2gHTegDaAhHQKiTNa+vhZR1fZQoaAZHQGl/X9rGipNoB01kAmgIR0ColLl9jPOZdX2UKGgGR0BgLPS8an76aAdNGwNoCEdAqKDwmgJ1JXV9lChoBkfAScpMcp9ZzWgHTdsBaAhHQKiicBQvYe11fZQoaAZHQGaR2cjJMg5oB00uAmgIR0Coos3nZCfIdX2UKGgGR8BXhjx9XtBwaAdNEAJoCEdAqKQGUSqU/3V9lChoBkdATVKr1dxAB2gHTegDaAhHQKinnQ/HHWB1fZQoaAZHwFC2DIRywOhoB03XAWgIR0Cop9m5+YtydX2UKGgGR0BlvJhUipvQaAdNQAJoCEdAqKlBgogFHXV9lChoBkdAYV7MHKOktWgHTRUDaAhHQKiufSsr/bV1fZQoaAZHQGkIdV/+bVloB01pAmgIR0Corq1X/5tWdX2UKGgGR0BjDRiuuA7QaAdN3gNoCEdAqK705ZKWcHV9lChoBkdAZRILiMo+fWgHTXQCaAhHQKiwBF98Z1p1fZQoaAZHQGlo0PH1e0JoB00sAmgIR0CosC59/jKgdX2UKGgGR0BcXrnHNorXaAdNOAJoCEdAqLHVp0wJxHV9lChoBkdAZvm7dSEUTWgHTUACaAhHQKiy9ie/Yap1fZQoaAZHQGZz/sVtXPtoB00qAmgIR0CotBZ00WM1dX2UKGgGR0BqKtktmL9/aAdNHAJoCEdAqLar0lJHy3V9lChoBkdAZnb7DVH4GmgHTRUCaAhHQKi2ya6z3RJ1fZQoaAZHwFbpgmJFb3ZoB03iAWgIR0CoutwBHTZydX2UKGgGR8BYDCTEBKcvaAdN1wJoCEdAqLs0iMYMv3V9lChoBkfAVrJpVS4vvmgHTa0BaAhHQKi9MMS9M9N1fZQoaAZHQGKhYC6pYLdoB02OAmgIR0CovrEwWWQfdX2UKGgGR0BPhm3F1jiGaAdN6ANoCEdAqL89krf+CXV9lChoBkdAZcF/2kBS1mgHTSsDaAhHQKjASMwUQCl1fZQoaAZHQGm7Tl90A95oB02BAmgIR0CowwjuKGcndX2UKGgGR8BNYJC0F8ohaAdNPQJoCEdAqM1alchTwXV9lChoBkdAYSmka/ATI2gHTZMCaAhHQKjNdRUm2LJ1fZQoaAZHwFCcyv9tMwloB03FAWgIR0CozbiK77KrdX2UKGgGR0BpEjU7Sy+paAdNIgJoCEdAqM6RoRIz33V9lChoBkdAaCfwz+FUQ2gHTa4CaAhHQKjPm6g/Tsp1fZQoaAZHQFl6RXfZVXFoB03oA2gIR0Co0zbOmixndX2UKGgGR0BnrJTjvNNbaAdNIgJoCEdAqNWZ2GIsRXV9lChoBkdAaJbSWqtHQWgHTTECaAhHQKjWd2qT8pF1fZQoaAZHwE22v/zasZJoB03DAWgIR0Co1sPNVzZIdX2UKGgGR0BZcYbbUPQOaAdNLwNoCEdAqNb0gGKQ73V9lChoBkdAZKO/bCaZyGgHTTUCaAhHQKjYp7XQMQV1fZQoaAZHQFmTOYplSTBoB03oA2gIR0Co2fNjTa0ydX2UKGgGR0BqBrvNNahYaAdNKQJoCEdAqNpRb+tKZnV9lChoBkfASGJIMBp5/2gHTZ8BaAhHQKjbHQ2MsH11fZQoaAZHwFPyU1yeZohoB02pAWgIR0Co20+armyPdX2UKGgGR8BQ+ZIMBp6AaAdNqAFoCEdAqN0S68QI2XV9lChoBkdAPuBx1gYxcmgHTegDaAhHQKjfBMGorFx1fZQoaAZHQGGMIe5nUUhoB009AmgIR0Co37IOQQtjdX2UKGgGR0BW2VWKdhAoaAdNtwJoCEdAqOJTowEhaHV9lChoBkdAa1B3225QQGgHTX4CaAhHQKjifD0lJH11fZQoaAZHwENIlANXo1VoB03RAWgIR0Co5Iq02LpBdX2UKGgGR0Bl6TMTviLmaAdNNAJoCEdAqOZ4VoHs1XV9lChoBkfAU9ki8nNPg2gHTbYBaAhHQKjngpKBd2R1fZQoaAZHQGG5zYNAkcFoB01dAmgIR0Co6WAavRqodX2UKGgGR0BSCYLgGbCraAdN6ANoCEdAqOmD6guh9XV9lChoBkdAaD8t5le4TmgHTSICaAhHQKjpmAH3UQV1fZQoaAZHQGcStgKF7D5oB00AAmgIR0Co65l2mpEQdX2UKGgGR0BhLpDArQPaaAdNQAJoCEdAqO58eCCjDnV9lChoBkdAVmPObAk9lmgHTfMCaAhHQKjvAL4N7Sl1fZQoaAZHQFvepjMFEApoB00/AmgIR0Co+nDuBtk4dX2UKGgGR8A6KQ6ZH/cWaAdNXgFoCEdAqP0GnIhhY3V9lChoBkdARgVaKUFB6mgHTegDaAhHQKj9w9rXUYt1fZQoaAZHQGlcbrs0HhVoB01ZAmgIR0Co/krIo3JgdX2UKGgGR0Blc+kep4r0aAdNLgJoCEdAqP+2WMS9NHV9lChoBkdAWqVhMJx//mgHTboCaAhHQKkAfOnl4kh1fZQoaAZHQGnIkm6XjVBoB02gAmgIR0CpAxtrbg0kdX2UKGgGR0A8mjKPn0TUaAdN6ANoCEdAqQQ6zHCGe3V9lChoBkdAYk3ze40/GGgHTYYCaAhHQKkEjALy+Yd1fZQoaAZHQGnZDpkf9xZoB00yAmgIR0CpBuiVjZtfdX2UKGgGR8BVmm2gFotdaAdNtwFoCEdAqQbypxWDH3V9lChoBkdAaeu4LkS26WgHTXUCaAhHQKkHf8hs67x1fZQoaAZHQGl56TOgQH1oB00yAmgIR0CpCNjzRQaadX2UKGgGR8BUoHbypaRqaAdNAQJoCEdAqQoN9roGIXV9lChoBkdAau+Kc/dIoWgHTe4BaAhHQKkLYNH6Mzd1fZQoaAZHQGkruEug6EJoB02iAWgIR0CpDMV2JSBLdX2UKGgGR8BHahr30wrUaAdNtgFoCEdAqQziaVlf7nV9lChoBkfAR/3pW3jMmmgHTaYBaAhHQKkOIpI+W4V1fZQoaAZHQGNR7XQMQVdoB02eAmgIR0CpE5Y9HMEBdX2UKGgGR8BPlk61b7j1aAdNxgFoCEdAqRRjcj7hvXV9lChoBkdAS8n2ZiNKiGgHTegDaAhHQKkVpWrfcet1fZQoaAZHQFgImelKsdVoB03oA2gIR0CpFb5OBUaRdX2UKGgGR0BnVNvQ4S6EaAdNIwJoCEdAqRYsauOjqXV9lChoBkdAZ5Wb0e2d/mgHTRQCaAhHQKkW113+uNh1fZQoaAZHQGg9xCY1He9oB00pAmgIR0CpGXYIKMNudX2UKGgGR0BmrYEIPbwjaAdNOwJoCEdAqRoODFqBVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.97, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a04f9e9af624d84dae1b1d53894a032466113e7d3d28608fe9ef5a92c2925d32
|
3 |
+
size 148057
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -78,7 +78,7 @@
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
-
"gamma": 0.
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d4af41fd480>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d4af41fd510>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d4af41fd5a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d4af41fd630>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d4af41fd6c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d4af41fd750>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d4af41fd7e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d4af41fd870>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d4af41fd900>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d4af41fd990>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d4af41fda20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d4af41fdab0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d4af41a3d00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1702061624675331263,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbuAj+20m89wI2RvXmXR7117jY8o4gzvQAAAAAAAAAAmkIWPsOEHztA2742kurdMykGrDzW2+K1AACAPwAAgD+T8QI/i7V+PxngEj5LQA6+Luw6Pfa5GzwAAAAAAAAAAAMa1z5UJog/IkJCPjST+r10gpA96Q0fOwAAAAAAAAAAWtlAP4lNoz6NwT26NZSouJtzOT6TJW45AACAPwAAgD+qGYS+ErUxPj5Dt70ZPZq9rGKJvNUS6jsAAAAAAAAAAKafZD/vUFQ+I4nqvX4aFb6CJxw7U4jfuwAAAAAAAAAA6K8LP9qmP716hLm7tNuRPNPfAL+GmkU9AACAPwAAgD+qHxi/K7QXP3LrDb7d/K695XnvvJVkcD0AAAAAAAAAABUOlb5rNDU/N1+HvX9/Gr4niOu87K6mvQAAAAAAAAAA5vVSPniq1jyvsUy5sUMJuKeNcD4oepI4AACAPwAAgD/zPam9sEAoP3wVwr09+Sa+bpCrvJe7Nz0AAAAAAAAAADr2Jr5m+qQ/7ToSv+a2jL553iK+rlGovQAAAAAAAAAAAxqPPh/+mj8Q8Pw+IsnsvYpdAj4Y9l+9AAAAAAAAAACwr2y+BZ8lPrpSAb5LfSq+D7wpvfIfkTwAAAAAAAAAACbhCT/QLS0/W4haPSQnB75UGK087xUOvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQE9i2jwhGH6MAWyUTegDjAF0lEdAqHgZ5ooNNXV9lChoBkdAaUk5zYEns2gHTV0CaAhHQKh4uqQzUI91fZQoaAZHQGXfsWfseGRoB01sAmgIR0CoeTLlV94NdX2UKGgGR0Bq0/ZGrjo7aAdNGQJoCEdAqHpfWDpTuXV9lChoBkdAaHz/CqIacmgHTZoCaAhHQKh/Xbu+h5B1fZQoaAZHQGnzfCZWq95oB038AWgIR0Cof3NCJGe+dX2UKGgGR8BUT+8Gs3hoaAdNEwJoCEdAqIC68vmHQHV9lChoBkdAZWujBVMmGGgHTfsCaAhHQKiDhirksBh1fZQoaAZHQGGzN/4IrvtoB03ZAmgIR0CohSEBjnV5dX2UKGgGR8BUt8Zk078vaAdNuwFoCEdAqIeH5xiobXV9lChoBkdAQS1E9dNWVGgHTegDaAhHQKiHwEAYHgR1fZQoaAZHQGWV4/FBIFxoB00tAmgIR0Coh9P4dp7DdX2UKGgGR0Bnj0ejmCAdaAdNLAJoCEdAqIqQ9TxXn3V9lChoBkfATETADaGpM2gHTRABaAhHQKiNCDvmYBx1fZQoaAZHQGTBHlwLmZFoB01BAmgIR0CojfMG5c1PdX2UKGgGR0BnO37xd6cBaAdNIAJoCEdAqI71PacqfHV9lChoBkdAYjPw+dK/VWgHTQcDaAhHQKiRjUPxx1h1fZQoaAZHQGHvzWPLgXNoB03MAmgIR0Cokd+pn6EbdX2UKGgGR8BUA2q1gH/taAdNFgJoCEdAqJKRmwqy4XV9lChoBkdAQmk2Hck+o2gHTegDaAhHQKiTNa+vhZR1fZQoaAZHQGl/X9rGipNoB01kAmgIR0ColLl9jPOZdX2UKGgGR0BgLPS8an76aAdNGwNoCEdAqKDwmgJ1JXV9lChoBkfAScpMcp9ZzWgHTdsBaAhHQKiicBQvYe11fZQoaAZHQGaR2cjJMg5oB00uAmgIR0Coos3nZCfIdX2UKGgGR8BXhjx9XtBwaAdNEAJoCEdAqKQGUSqU/3V9lChoBkdATVKr1dxAB2gHTegDaAhHQKinnQ/HHWB1fZQoaAZHwFC2DIRywOhoB03XAWgIR0Cop9m5+YtydX2UKGgGR0BlvJhUipvQaAdNQAJoCEdAqKlBgogFHXV9lChoBkdAYV7MHKOktWgHTRUDaAhHQKiufSsr/bV1fZQoaAZHQGkIdV/+bVloB01pAmgIR0Corq1X/5tWdX2UKGgGR0BjDRiuuA7QaAdN3gNoCEdAqK705ZKWcHV9lChoBkdAZRILiMo+fWgHTXQCaAhHQKiwBF98Z1p1fZQoaAZHQGlo0PH1e0JoB00sAmgIR0CosC59/jKgdX2UKGgGR0BcXrnHNorXaAdNOAJoCEdAqLHVp0wJxHV9lChoBkdAZvm7dSEUTWgHTUACaAhHQKiy9ie/Yap1fZQoaAZHQGZz/sVtXPtoB00qAmgIR0CotBZ00WM1dX2UKGgGR0BqKtktmL9/aAdNHAJoCEdAqLar0lJHy3V9lChoBkdAZnb7DVH4GmgHTRUCaAhHQKi2ya6z3RJ1fZQoaAZHwFbpgmJFb3ZoB03iAWgIR0CoutwBHTZydX2UKGgGR8BYDCTEBKcvaAdN1wJoCEdAqLs0iMYMv3V9lChoBkfAVrJpVS4vvmgHTa0BaAhHQKi9MMS9M9N1fZQoaAZHQGKhYC6pYLdoB02OAmgIR0CovrEwWWQfdX2UKGgGR0BPhm3F1jiGaAdN6ANoCEdAqL89krf+CXV9lChoBkdAZcF/2kBS1mgHTSsDaAhHQKjASMwUQCl1fZQoaAZHQGm7Tl90A95oB02BAmgIR0CowwjuKGcndX2UKGgGR8BNYJC0F8ohaAdNPQJoCEdAqM1alchTwXV9lChoBkdAYSmka/ATI2gHTZMCaAhHQKjNdRUm2LJ1fZQoaAZHwFCcyv9tMwloB03FAWgIR0CozbiK77KrdX2UKGgGR0BpEjU7Sy+paAdNIgJoCEdAqM6RoRIz33V9lChoBkdAaCfwz+FUQ2gHTa4CaAhHQKjPm6g/Tsp1fZQoaAZHQFl6RXfZVXFoB03oA2gIR0Co0zbOmixndX2UKGgGR0BnrJTjvNNbaAdNIgJoCEdAqNWZ2GIsRXV9lChoBkdAaJbSWqtHQWgHTTECaAhHQKjWd2qT8pF1fZQoaAZHwE22v/zasZJoB03DAWgIR0Co1sPNVzZIdX2UKGgGR0BZcYbbUPQOaAdNLwNoCEdAqNb0gGKQ73V9lChoBkdAZKO/bCaZyGgHTTUCaAhHQKjYp7XQMQV1fZQoaAZHQFmTOYplSTBoB03oA2gIR0Co2fNjTa0ydX2UKGgGR0BqBrvNNahYaAdNKQJoCEdAqNpRb+tKZnV9lChoBkfASGJIMBp5/2gHTZ8BaAhHQKjbHQ2MsH11fZQoaAZHwFPyU1yeZohoB02pAWgIR0Co20+armyPdX2UKGgGR8BQ+ZIMBp6AaAdNqAFoCEdAqN0S68QI2XV9lChoBkdAPuBx1gYxcmgHTegDaAhHQKjfBMGorFx1fZQoaAZHQGGMIe5nUUhoB009AmgIR0Co37IOQQtjdX2UKGgGR0BW2VWKdhAoaAdNtwJoCEdAqOJTowEhaHV9lChoBkdAa1B3225QQGgHTX4CaAhHQKjifD0lJH11fZQoaAZHwENIlANXo1VoB03RAWgIR0Co5Iq02LpBdX2UKGgGR0Bl6TMTviLmaAdNNAJoCEdAqOZ4VoHs1XV9lChoBkfAU9ki8nNPg2gHTbYBaAhHQKjngpKBd2R1fZQoaAZHQGG5zYNAkcFoB01dAmgIR0Co6WAavRqodX2UKGgGR0BSCYLgGbCraAdN6ANoCEdAqOmD6guh9XV9lChoBkdAaD8t5le4TmgHTSICaAhHQKjpmAH3UQV1fZQoaAZHQGcStgKF7D5oB00AAmgIR0Co65l2mpEQdX2UKGgGR0BhLpDArQPaaAdNQAJoCEdAqO58eCCjDnV9lChoBkdAVmPObAk9lmgHTfMCaAhHQKjvAL4N7Sl1fZQoaAZHQFvepjMFEApoB00/AmgIR0Co+nDuBtk4dX2UKGgGR8A6KQ6ZH/cWaAdNXgFoCEdAqP0GnIhhY3V9lChoBkdARgVaKUFB6mgHTegDaAhHQKj9w9rXUYt1fZQoaAZHQGlcbrs0HhVoB01ZAmgIR0Co/krIo3JgdX2UKGgGR0Blc+kep4r0aAdNLgJoCEdAqP+2WMS9NHV9lChoBkdAWqVhMJx//mgHTboCaAhHQKkAfOnl4kh1fZQoaAZHQGnIkm6XjVBoB02gAmgIR0CpAxtrbg0kdX2UKGgGR0A8mjKPn0TUaAdN6ANoCEdAqQQ6zHCGe3V9lChoBkdAYk3ze40/GGgHTYYCaAhHQKkEjALy+Yd1fZQoaAZHQGnZDpkf9xZoB00yAmgIR0CpBuiVjZtfdX2UKGgGR8BVmm2gFotdaAdNtwFoCEdAqQbypxWDH3V9lChoBkdAaeu4LkS26WgHTXUCaAhHQKkHf8hs67x1fZQoaAZHQGl56TOgQH1oB00yAmgIR0CpCNjzRQaadX2UKGgGR8BUoHbypaRqaAdNAQJoCEdAqQoN9roGIXV9lChoBkdAau+Kc/dIoWgHTe4BaAhHQKkLYNH6Mzd1fZQoaAZHQGkruEug6EJoB02iAWgIR0CpDMV2JSBLdX2UKGgGR8BHahr30wrUaAdNtgFoCEdAqQziaVlf7nV9lChoBkfAR/3pW3jMmmgHTaYBaAhHQKkOIpI+W4V1fZQoaAZHQGNR7XQMQVdoB02eAmgIR0CpE5Y9HMEBdX2UKGgGR8BPlk61b7j1aAdNxgFoCEdAqRRjcj7hvXV9lChoBkdAS8n2ZiNKiGgHTegDaAhHQKkVpWrfcet1fZQoaAZHQFgImelKsdVoB03oA2gIR0CpFb5OBUaRdX2UKGgGR0BnVNvQ4S6EaAdNIwJoCEdAqRYsauOjqXV9lChoBkdAZ5Wb0e2d/mgHTRQCaAhHQKkW113+uNh1fZQoaAZHQGg9xCY1He9oB00pAmgIR0CpGXYIKMNudX2UKGgGR0BmrYEIPbwjaAdNOwJoCEdAqRoODFqBVnVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 492,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
"n_steps": 1024,
|
81 |
+
"gamma": 0.97,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:906708e8103cd26a99a28b75b9f9d9ad101536c699fedff47107a41f5a4cd771
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e75281ab0409a3f1772af708adb3cdcf57e801c75ea39501225e8a7859ec641
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 125.94505589999999, "std_reward": 59.23332401492307, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-08T19:48:33.886676"}
|