File size: 1,206 Bytes
eb76106
 
 
 
7aa38e5
eb76106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aa38e5
 
eb76106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
tags:
- spacy
- token-classification
- named-entity-recognition
language:
- en
model-index:
- name: en_Medical_Custom_ner
  results:
  - task:
      name: NER
      type: token-classification
    metrics:
    - name: NER Precision
      type: precision
      value: 0.9538461538
    - name: NER Recall
      type: recall
      value: 0.9763779528
    - name: NER F Score
      type: f_score
      value: 0.9649805447
library_name: spacy
pipeline_tag: token-classification
---
| Feature | Description |
| --- | --- |
| **Name** | `en_Medical_Custom_ner` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.6.1,<3.7.0` |
| **Default Pipeline** | `tok2vec`, `ner` |
| **Components** | `tok2vec`, `ner` |
| **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |

### Label Scheme

<details>

<summary>View label scheme (3 labels for 1 components)</summary>

| Component | Labels |
| --- | --- |
| **`ner`** | `MEDICALCONDITION`, `MEDICINE`, `PATHOGEN` |

</details>

### Accuracy

| Type | Score |
| --- | --- |
| `ENTS_F` | 96.50 |
| `ENTS_P` | 95.38 |
| `ENTS_R` | 97.64 |
| `TOK2VEC_LOSS` | 8886.35 |
| `NER_LOSS` | 41564.56 |