--- license: apache-2.0 tags: - mteb - arctic model-index: - name: arctic-embed-xs results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 65.08955223880598 - type: ap value: 28.514291209445364 - type: f1 value: 59.2604580112738 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 70.035375 - type: ap value: 64.29444264250405 - type: f1 value: 69.78382333907138 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 35.343999999999994 - type: f1 value: 34.69618251902858 - task: type: Retrieval dataset: type: mteb/arguana name: MTEB ArguAna config: default split: test revision: c22ab2a51041ffd869aaddef7af8d8215647e41a metrics: - type: map_at_1 value: 28.592000000000002 - type: map_at_10 value: 43.597 - type: map_at_100 value: 44.614 - type: map_at_1000 value: 44.624 - type: map_at_3 value: 38.928000000000004 - type: map_at_5 value: 41.453 - type: mrr_at_1 value: 29.232000000000003 - type: mrr_at_10 value: 43.829 - type: mrr_at_100 value: 44.852 - type: mrr_at_1000 value: 44.862 - type: mrr_at_3 value: 39.118 - type: mrr_at_5 value: 41.703 - type: ndcg_at_1 value: 28.592000000000002 - type: ndcg_at_10 value: 52.081 - type: ndcg_at_100 value: 56.37 - type: ndcg_at_1000 value: 56.598000000000006 - type: ndcg_at_3 value: 42.42 - type: ndcg_at_5 value: 46.965 - type: precision_at_1 value: 28.592000000000002 - type: precision_at_10 value: 7.922999999999999 - type: precision_at_100 value: 0.979 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 17.52 - type: precision_at_5 value: 12.717 - type: recall_at_1 value: 28.592000000000002 - type: recall_at_10 value: 79.232 - type: recall_at_100 value: 97.866 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 52.559999999999995 - type: recall_at_5 value: 63.585 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 43.50220588953974 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 32.08725826118282 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 60.25381587694928 - type: mrr value: 73.79776194873148 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 85.47489332445278 - type: cos_sim_spearman value: 84.05432487336698 - type: euclidean_pearson value: 84.5108222177219 - type: euclidean_spearman value: 84.05432487336698 - type: manhattan_pearson value: 84.20440618321464 - type: manhattan_spearman value: 83.9290208134097 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 76.37337662337663 - type: f1 value: 75.33296834885043 - task: type: Clustering dataset: type: jinaai/big-patent-clustering name: MTEB BigPatentClustering config: default split: test revision: 62d5330920bca426ce9d3c76ea914f15fc83e891 metrics: - type: v_measure value: 21.31174373264835 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 34.481973521597844 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 26.14094256567341 - task: type: Retrieval dataset: type: mteb/cqadupstack-android name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: f46a197baaae43b4f621051089b82a364682dfeb metrics: - type: map_at_1 value: 32.527 - type: map_at_10 value: 43.699 - type: map_at_100 value: 45.03 - type: map_at_1000 value: 45.157000000000004 - type: map_at_3 value: 39.943 - type: map_at_5 value: 42.324 - type: mrr_at_1 value: 39.771 - type: mrr_at_10 value: 49.277 - type: mrr_at_100 value: 49.956 - type: mrr_at_1000 value: 50.005 - type: mrr_at_3 value: 46.304 - type: mrr_at_5 value: 48.493 - type: ndcg_at_1 value: 39.771 - type: ndcg_at_10 value: 49.957 - type: ndcg_at_100 value: 54.678000000000004 - type: ndcg_at_1000 value: 56.751 - type: ndcg_at_3 value: 44.608 - type: ndcg_at_5 value: 47.687000000000005 - type: precision_at_1 value: 39.771 - type: precision_at_10 value: 9.557 - type: precision_at_100 value: 1.5010000000000001 - type: precision_at_1000 value: 0.194 - type: precision_at_3 value: 21.173000000000002 - type: precision_at_5 value: 15.794 - type: recall_at_1 value: 32.527 - type: recall_at_10 value: 61.791 - type: recall_at_100 value: 81.49300000000001 - type: recall_at_1000 value: 95.014 - type: recall_at_3 value: 46.605000000000004 - type: recall_at_5 value: 54.83 - task: type: Retrieval dataset: type: mteb/cqadupstack-english name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 metrics: - type: map_at_1 value: 29.424 - type: map_at_10 value: 38.667 - type: map_at_100 value: 39.771 - type: map_at_1000 value: 39.899 - type: map_at_3 value: 35.91 - type: map_at_5 value: 37.45 - type: mrr_at_1 value: 36.687999999999995 - type: mrr_at_10 value: 44.673 - type: mrr_at_100 value: 45.289 - type: mrr_at_1000 value: 45.338 - type: mrr_at_3 value: 42.601 - type: mrr_at_5 value: 43.875 - type: ndcg_at_1 value: 36.687999999999995 - type: ndcg_at_10 value: 44.013000000000005 - type: ndcg_at_100 value: 48.13 - type: ndcg_at_1000 value: 50.294000000000004 - type: ndcg_at_3 value: 40.056999999999995 - type: ndcg_at_5 value: 41.902 - type: precision_at_1 value: 36.687999999999995 - type: precision_at_10 value: 8.158999999999999 - type: precision_at_100 value: 1.321 - type: precision_at_1000 value: 0.179 - type: precision_at_3 value: 19.045 - type: precision_at_5 value: 13.427 - type: recall_at_1 value: 29.424 - type: recall_at_10 value: 53.08500000000001 - type: recall_at_100 value: 70.679 - type: recall_at_1000 value: 84.66 - type: recall_at_3 value: 41.399 - type: recall_at_5 value: 46.632 - task: type: Retrieval dataset: type: mteb/cqadupstack-gaming name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 4885aa143210c98657558c04aaf3dc47cfb54340 metrics: - type: map_at_1 value: 39.747 - type: map_at_10 value: 51.452 - type: map_at_100 value: 52.384 - type: map_at_1000 value: 52.437 - type: map_at_3 value: 48.213 - type: map_at_5 value: 50.195 - type: mrr_at_1 value: 45.391999999999996 - type: mrr_at_10 value: 54.928 - type: mrr_at_100 value: 55.532000000000004 - type: mrr_at_1000 value: 55.565 - type: mrr_at_3 value: 52.456 - type: mrr_at_5 value: 54.054 - type: ndcg_at_1 value: 45.391999999999996 - type: ndcg_at_10 value: 57.055 - type: ndcg_at_100 value: 60.751999999999995 - type: ndcg_at_1000 value: 61.864 - type: ndcg_at_3 value: 51.662 - type: ndcg_at_5 value: 54.613 - type: precision_at_1 value: 45.391999999999996 - type: precision_at_10 value: 9.103 - type: precision_at_100 value: 1.1780000000000002 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 22.717000000000002 - type: precision_at_5 value: 15.812000000000001 - type: recall_at_1 value: 39.747 - type: recall_at_10 value: 70.10499999999999 - type: recall_at_100 value: 86.23100000000001 - type: recall_at_1000 value: 94.025 - type: recall_at_3 value: 55.899 - type: recall_at_5 value: 63.05500000000001 - task: type: Retrieval dataset: type: mteb/cqadupstack-gis name: MTEB CQADupstackGisRetrieval config: default split: test revision: 5003b3064772da1887988e05400cf3806fe491f2 metrics: - type: map_at_1 value: 27.168999999999997 - type: map_at_10 value: 34.975 - type: map_at_100 value: 35.94 - type: map_at_1000 value: 36.021 - type: map_at_3 value: 32.35 - type: map_at_5 value: 33.831 - type: mrr_at_1 value: 28.701 - type: mrr_at_10 value: 36.698 - type: mrr_at_100 value: 37.546 - type: mrr_at_1000 value: 37.613 - type: mrr_at_3 value: 34.256 - type: mrr_at_5 value: 35.685 - type: ndcg_at_1 value: 28.701 - type: ndcg_at_10 value: 39.639 - type: ndcg_at_100 value: 44.389 - type: ndcg_at_1000 value: 46.46 - type: ndcg_at_3 value: 34.52 - type: ndcg_at_5 value: 37.076 - type: precision_at_1 value: 28.701 - type: precision_at_10 value: 5.955 - type: precision_at_100 value: 0.8880000000000001 - type: precision_at_1000 value: 0.109 - type: precision_at_3 value: 14.274999999999999 - type: precision_at_5 value: 10.011000000000001 - type: recall_at_1 value: 27.168999999999997 - type: recall_at_10 value: 52.347 - type: recall_at_100 value: 74.1 - type: recall_at_1000 value: 89.739 - type: recall_at_3 value: 38.567 - type: recall_at_5 value: 44.767 - task: type: Retrieval dataset: type: mteb/cqadupstack-mathematica name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 90fceea13679c63fe563ded68f3b6f06e50061de metrics: - type: map_at_1 value: 15.872 - type: map_at_10 value: 23.153000000000002 - type: map_at_100 value: 24.311 - type: map_at_1000 value: 24.432000000000002 - type: map_at_3 value: 20.707 - type: map_at_5 value: 21.921 - type: mrr_at_1 value: 19.776 - type: mrr_at_10 value: 27.755999999999997 - type: mrr_at_100 value: 28.709 - type: mrr_at_1000 value: 28.778 - type: mrr_at_3 value: 25.186999999999998 - type: mrr_at_5 value: 26.43 - type: ndcg_at_1 value: 19.776 - type: ndcg_at_10 value: 28.288999999999998 - type: ndcg_at_100 value: 34.011 - type: ndcg_at_1000 value: 36.916 - type: ndcg_at_3 value: 23.551 - type: ndcg_at_5 value: 25.429000000000002 - type: precision_at_1 value: 19.776 - type: precision_at_10 value: 5.311 - type: precision_at_100 value: 0.9440000000000001 - type: precision_at_1000 value: 0.132 - type: precision_at_3 value: 11.360000000000001 - type: precision_at_5 value: 8.209 - type: recall_at_1 value: 15.872 - type: recall_at_10 value: 39.726 - type: recall_at_100 value: 65.035 - type: recall_at_1000 value: 85.846 - type: recall_at_3 value: 26.432 - type: recall_at_5 value: 31.22 - task: type: Retrieval dataset: type: mteb/cqadupstack-physics name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 metrics: - type: map_at_1 value: 28.126 - type: map_at_10 value: 37.537 - type: map_at_100 value: 38.807 - type: map_at_1000 value: 38.923 - type: map_at_3 value: 34.65 - type: map_at_5 value: 36.248000000000005 - type: mrr_at_1 value: 34.649 - type: mrr_at_10 value: 42.893 - type: mrr_at_100 value: 43.721 - type: mrr_at_1000 value: 43.775999999999996 - type: mrr_at_3 value: 40.488 - type: mrr_at_5 value: 41.729 - type: ndcg_at_1 value: 34.649 - type: ndcg_at_10 value: 43.072 - type: ndcg_at_100 value: 48.464 - type: ndcg_at_1000 value: 50.724000000000004 - type: ndcg_at_3 value: 38.506 - type: ndcg_at_5 value: 40.522000000000006 - type: precision_at_1 value: 34.649 - type: precision_at_10 value: 7.68 - type: precision_at_100 value: 1.214 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 18.029999999999998 - type: precision_at_5 value: 12.666 - type: recall_at_1 value: 28.126 - type: recall_at_10 value: 54.396 - type: recall_at_100 value: 76.988 - type: recall_at_1000 value: 91.85799999999999 - type: recall_at_3 value: 41.169 - type: recall_at_5 value: 46.658 - task: type: Retrieval dataset: type: mteb/cqadupstack-programmers name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 metrics: - type: map_at_1 value: 26.68 - type: map_at_10 value: 35.702 - type: map_at_100 value: 36.864999999999995 - type: map_at_1000 value: 36.977 - type: map_at_3 value: 32.828 - type: map_at_5 value: 34.481 - type: mrr_at_1 value: 32.991 - type: mrr_at_10 value: 40.993 - type: mrr_at_100 value: 41.827 - type: mrr_at_1000 value: 41.887 - type: mrr_at_3 value: 38.623000000000005 - type: mrr_at_5 value: 40.021 - type: ndcg_at_1 value: 32.991 - type: ndcg_at_10 value: 41.036 - type: ndcg_at_100 value: 46.294000000000004 - type: ndcg_at_1000 value: 48.644 - type: ndcg_at_3 value: 36.419000000000004 - type: ndcg_at_5 value: 38.618 - type: precision_at_1 value: 32.991 - type: precision_at_10 value: 7.385999999999999 - type: precision_at_100 value: 1.176 - type: precision_at_1000 value: 0.151 - type: precision_at_3 value: 17.122999999999998 - type: precision_at_5 value: 12.215 - type: recall_at_1 value: 26.68 - type: recall_at_10 value: 51.644 - type: recall_at_100 value: 74.55000000000001 - type: recall_at_1000 value: 90.825 - type: recall_at_3 value: 38.579 - type: recall_at_5 value: 44.512 - task: type: Retrieval dataset: type: mteb/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 26.30825 - type: map_at_10 value: 34.97866666666666 - type: map_at_100 value: 36.109249999999996 - type: map_at_1000 value: 36.22508333333333 - type: map_at_3 value: 32.239083333333326 - type: map_at_5 value: 33.75933333333334 - type: mrr_at_1 value: 31.05308333333333 - type: mrr_at_10 value: 39.099833333333336 - type: mrr_at_100 value: 39.92008333333334 - type: mrr_at_1000 value: 39.980000000000004 - type: mrr_at_3 value: 36.75958333333333 - type: mrr_at_5 value: 38.086416666666665 - type: ndcg_at_1 value: 31.05308333333333 - type: ndcg_at_10 value: 40.11558333333334 - type: ndcg_at_100 value: 45.05966666666667 - type: ndcg_at_1000 value: 47.36516666666667 - type: ndcg_at_3 value: 35.490833333333335 - type: ndcg_at_5 value: 37.64541666666666 - type: precision_at_1 value: 31.05308333333333 - type: precision_at_10 value: 6.968416666666666 - type: precision_at_100 value: 1.1156666666666666 - type: precision_at_1000 value: 0.14950000000000002 - type: precision_at_3 value: 16.123 - type: precision_at_5 value: 11.451166666666666 - type: recall_at_1 value: 26.30825 - type: recall_at_10 value: 51.19283333333333 - type: recall_at_100 value: 73.0285 - type: recall_at_1000 value: 89.11133333333333 - type: recall_at_3 value: 38.26208333333333 - type: recall_at_5 value: 43.855916666666666 - task: type: Retrieval dataset: type: mteb/cqadupstack-stats name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a metrics: - type: map_at_1 value: 23.363999999999997 - type: map_at_10 value: 30.606 - type: map_at_100 value: 31.491999999999997 - type: map_at_1000 value: 31.578 - type: map_at_3 value: 28.610000000000003 - type: map_at_5 value: 29.602 - type: mrr_at_1 value: 26.38 - type: mrr_at_10 value: 33.472 - type: mrr_at_100 value: 34.299 - type: mrr_at_1000 value: 34.361999999999995 - type: mrr_at_3 value: 31.696999999999996 - type: mrr_at_5 value: 32.503 - type: ndcg_at_1 value: 26.38 - type: ndcg_at_10 value: 34.772999999999996 - type: ndcg_at_100 value: 39.334 - type: ndcg_at_1000 value: 41.676 - type: ndcg_at_3 value: 31.097 - type: ndcg_at_5 value: 32.561 - type: precision_at_1 value: 26.38 - type: precision_at_10 value: 5.475 - type: precision_at_100 value: 0.84 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 13.395000000000001 - type: precision_at_5 value: 9.11 - type: recall_at_1 value: 23.363999999999997 - type: recall_at_10 value: 44.656 - type: recall_at_100 value: 65.77199999999999 - type: recall_at_1000 value: 83.462 - type: recall_at_3 value: 34.213 - type: recall_at_5 value: 38.091 - task: type: Retrieval dataset: type: mteb/cqadupstack-tex name: MTEB CQADupstackTexRetrieval config: default split: test revision: 46989137a86843e03a6195de44b09deda022eec7 metrics: - type: map_at_1 value: 17.971999999999998 - type: map_at_10 value: 24.913 - type: map_at_100 value: 25.916 - type: map_at_1000 value: 26.049 - type: map_at_3 value: 22.569 - type: map_at_5 value: 23.858999999999998 - type: mrr_at_1 value: 21.748 - type: mrr_at_10 value: 28.711 - type: mrr_at_100 value: 29.535 - type: mrr_at_1000 value: 29.621 - type: mrr_at_3 value: 26.484999999999996 - type: mrr_at_5 value: 27.701999999999998 - type: ndcg_at_1 value: 21.748 - type: ndcg_at_10 value: 29.412 - type: ndcg_at_100 value: 34.204 - type: ndcg_at_1000 value: 37.358000000000004 - type: ndcg_at_3 value: 25.202 - type: ndcg_at_5 value: 27.128000000000004 - type: precision_at_1 value: 21.748 - type: precision_at_10 value: 5.279 - type: precision_at_100 value: 0.902 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 11.551 - type: precision_at_5 value: 8.437999999999999 - type: recall_at_1 value: 17.971999999999998 - type: recall_at_10 value: 39.186 - type: recall_at_100 value: 60.785999999999994 - type: recall_at_1000 value: 83.372 - type: recall_at_3 value: 27.584999999999997 - type: recall_at_5 value: 32.448 - task: type: Retrieval dataset: type: mteb/cqadupstack-unix name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 metrics: - type: map_at_1 value: 26.684 - type: map_at_10 value: 35.188 - type: map_at_100 value: 36.379 - type: map_at_1000 value: 36.481 - type: map_at_3 value: 32.401 - type: map_at_5 value: 34.132 - type: mrr_at_1 value: 31.063000000000002 - type: mrr_at_10 value: 39.104 - type: mrr_at_100 value: 40.062999999999995 - type: mrr_at_1000 value: 40.119 - type: mrr_at_3 value: 36.692 - type: mrr_at_5 value: 38.161 - type: ndcg_at_1 value: 31.063000000000002 - type: ndcg_at_10 value: 40.096 - type: ndcg_at_100 value: 45.616 - type: ndcg_at_1000 value: 47.869 - type: ndcg_at_3 value: 35.256 - type: ndcg_at_5 value: 37.826 - type: precision_at_1 value: 31.063000000000002 - type: precision_at_10 value: 6.622999999999999 - type: precision_at_100 value: 1.046 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 15.641 - type: precision_at_5 value: 11.231 - type: recall_at_1 value: 26.684 - type: recall_at_10 value: 51.092999999999996 - type: recall_at_100 value: 75.099 - type: recall_at_1000 value: 90.644 - type: recall_at_3 value: 38.063 - type: recall_at_5 value: 44.518 - task: type: Retrieval dataset: type: mteb/cqadupstack-webmasters name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 160c094312a0e1facb97e55eeddb698c0abe3571 metrics: - type: map_at_1 value: 26.249 - type: map_at_10 value: 34.694 - type: map_at_100 value: 36.208 - type: map_at_1000 value: 36.443 - type: map_at_3 value: 31.868000000000002 - type: map_at_5 value: 33.018 - type: mrr_at_1 value: 31.818 - type: mrr_at_10 value: 39.416000000000004 - type: mrr_at_100 value: 40.327 - type: mrr_at_1000 value: 40.388000000000005 - type: mrr_at_3 value: 37.120999999999995 - type: mrr_at_5 value: 38.07 - type: ndcg_at_1 value: 31.818 - type: ndcg_at_10 value: 40.405 - type: ndcg_at_100 value: 45.816 - type: ndcg_at_1000 value: 48.403 - type: ndcg_at_3 value: 35.823 - type: ndcg_at_5 value: 37.191 - type: precision_at_1 value: 31.818 - type: precision_at_10 value: 7.806 - type: precision_at_100 value: 1.518 - type: precision_at_1000 value: 0.241 - type: precision_at_3 value: 16.535 - type: precision_at_5 value: 11.738999999999999 - type: recall_at_1 value: 26.249 - type: recall_at_10 value: 50.928 - type: recall_at_100 value: 75.271 - type: recall_at_1000 value: 91.535 - type: recall_at_3 value: 37.322 - type: recall_at_5 value: 41.318 - task: type: Retrieval dataset: type: mteb/cqadupstack-wordpress name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 metrics: - type: map_at_1 value: 21.884999999999998 - type: map_at_10 value: 29.158 - type: map_at_100 value: 30.208000000000002 - type: map_at_1000 value: 30.304 - type: map_at_3 value: 26.82 - type: map_at_5 value: 28.051 - type: mrr_at_1 value: 23.66 - type: mrr_at_10 value: 31.277 - type: mrr_at_100 value: 32.237 - type: mrr_at_1000 value: 32.308 - type: mrr_at_3 value: 29.205 - type: mrr_at_5 value: 30.314000000000004 - type: ndcg_at_1 value: 23.66 - type: ndcg_at_10 value: 33.64 - type: ndcg_at_100 value: 39.028 - type: ndcg_at_1000 value: 41.423 - type: ndcg_at_3 value: 29.189 - type: ndcg_at_5 value: 31.191999999999997 - type: precision_at_1 value: 23.66 - type: precision_at_10 value: 5.287 - type: precision_at_100 value: 0.86 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 12.631 - type: precision_at_5 value: 8.762 - type: recall_at_1 value: 21.884999999999998 - type: recall_at_10 value: 45.357 - type: recall_at_100 value: 70.338 - type: recall_at_1000 value: 88.356 - type: recall_at_3 value: 33.312000000000005 - type: recall_at_5 value: 38.222 - task: type: Retrieval dataset: type: mteb/climate-fever name: MTEB ClimateFEVER config: default split: test revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 metrics: - type: map_at_1 value: 13.058 - type: map_at_10 value: 21.549 - type: map_at_100 value: 23.287 - type: map_at_1000 value: 23.444000000000003 - type: map_at_3 value: 18.18 - type: map_at_5 value: 19.886 - type: mrr_at_1 value: 28.73 - type: mrr_at_10 value: 40.014 - type: mrr_at_100 value: 40.827000000000005 - type: mrr_at_1000 value: 40.866 - type: mrr_at_3 value: 36.602000000000004 - type: mrr_at_5 value: 38.702 - type: ndcg_at_1 value: 28.73 - type: ndcg_at_10 value: 29.881 - type: ndcg_at_100 value: 36.662 - type: ndcg_at_1000 value: 39.641999999999996 - type: ndcg_at_3 value: 24.661 - type: ndcg_at_5 value: 26.548 - type: precision_at_1 value: 28.73 - type: precision_at_10 value: 9.094 - type: precision_at_100 value: 1.6480000000000001 - type: precision_at_1000 value: 0.22100000000000003 - type: precision_at_3 value: 17.98 - type: precision_at_5 value: 13.811000000000002 - type: recall_at_1 value: 13.058 - type: recall_at_10 value: 35.458 - type: recall_at_100 value: 58.719 - type: recall_at_1000 value: 75.495 - type: recall_at_3 value: 22.607 - type: recall_at_5 value: 28.067999999999998 - task: type: Retrieval dataset: type: mteb/dbpedia name: MTEB DBPedia config: default split: test revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 metrics: - type: map_at_1 value: 8.811 - type: map_at_10 value: 19.134999999999998 - type: map_at_100 value: 26.905 - type: map_at_1000 value: 28.503 - type: map_at_3 value: 13.863 - type: map_at_5 value: 16.062 - type: mrr_at_1 value: 67 - type: mrr_at_10 value: 74.607 - type: mrr_at_100 value: 74.941 - type: mrr_at_1000 value: 74.954 - type: mrr_at_3 value: 73.042 - type: mrr_at_5 value: 73.992 - type: ndcg_at_1 value: 52.87500000000001 - type: ndcg_at_10 value: 40.199 - type: ndcg_at_100 value: 44.901 - type: ndcg_at_1000 value: 52.239999999999995 - type: ndcg_at_3 value: 44.983000000000004 - type: ndcg_at_5 value: 42.137 - type: precision_at_1 value: 67 - type: precision_at_10 value: 31.8 - type: precision_at_100 value: 10.315000000000001 - type: precision_at_1000 value: 2.0420000000000003 - type: precision_at_3 value: 48.667 - type: precision_at_5 value: 40.9 - type: recall_at_1 value: 8.811 - type: recall_at_10 value: 24.503 - type: recall_at_100 value: 51.288999999999994 - type: recall_at_1000 value: 74.827 - type: recall_at_3 value: 15.254999999999999 - type: recall_at_5 value: 18.698999999999998 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 41.839999999999996 - type: f1 value: 37.78718146306379 - task: type: Retrieval dataset: type: mteb/fever name: MTEB FEVER config: default split: test revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 metrics: - type: map_at_1 value: 68.47999999999999 - type: map_at_10 value: 78.782 - type: map_at_100 value: 79.021 - type: map_at_1000 value: 79.035 - type: map_at_3 value: 77.389 - type: map_at_5 value: 78.347 - type: mrr_at_1 value: 73.837 - type: mrr_at_10 value: 83.41499999999999 - type: mrr_at_100 value: 83.53399999999999 - type: mrr_at_1000 value: 83.535 - type: mrr_at_3 value: 82.32300000000001 - type: mrr_at_5 value: 83.13000000000001 - type: ndcg_at_1 value: 73.837 - type: ndcg_at_10 value: 83.404 - type: ndcg_at_100 value: 84.287 - type: ndcg_at_1000 value: 84.52199999999999 - type: ndcg_at_3 value: 81.072 - type: ndcg_at_5 value: 82.537 - type: precision_at_1 value: 73.837 - type: precision_at_10 value: 10.254000000000001 - type: precision_at_100 value: 1.088 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 31.538 - type: precision_at_5 value: 19.811 - type: recall_at_1 value: 68.47999999999999 - type: recall_at_10 value: 92.98100000000001 - type: recall_at_100 value: 96.50800000000001 - type: recall_at_1000 value: 97.925 - type: recall_at_3 value: 86.764 - type: recall_at_5 value: 90.39 - task: type: Retrieval dataset: type: mteb/fiqa name: MTEB FiQA2018 config: default split: test revision: 27a168819829fe9bcd655c2df245fb19452e8e06 metrics: - type: map_at_1 value: 16.786 - type: map_at_10 value: 26.97 - type: map_at_100 value: 28.488000000000003 - type: map_at_1000 value: 28.665000000000003 - type: map_at_3 value: 23.3 - type: map_at_5 value: 25.249 - type: mrr_at_1 value: 33.025 - type: mrr_at_10 value: 41.86 - type: mrr_at_100 value: 42.673 - type: mrr_at_1000 value: 42.714 - type: mrr_at_3 value: 39.403 - type: mrr_at_5 value: 40.723 - type: ndcg_at_1 value: 33.025 - type: ndcg_at_10 value: 34.522999999999996 - type: ndcg_at_100 value: 40.831 - type: ndcg_at_1000 value: 44.01 - type: ndcg_at_3 value: 30.698999999999998 - type: ndcg_at_5 value: 31.832 - type: precision_at_1 value: 33.025 - type: precision_at_10 value: 9.583 - type: precision_at_100 value: 1.619 - type: precision_at_1000 value: 0.22100000000000003 - type: precision_at_3 value: 20.216 - type: precision_at_5 value: 15.031 - type: recall_at_1 value: 16.786 - type: recall_at_10 value: 41.969 - type: recall_at_100 value: 66.353 - type: recall_at_1000 value: 85.299 - type: recall_at_3 value: 28.111000000000004 - type: recall_at_5 value: 33.645 - task: type: Retrieval dataset: type: mteb/hotpotqa name: MTEB HotpotQA config: default split: test revision: ab518f4d6fcca38d87c25209f94beba119d02014 metrics: - type: map_at_1 value: 37.346000000000004 - type: map_at_10 value: 56.184999999999995 - type: map_at_100 value: 57.062000000000005 - type: map_at_1000 value: 57.126999999999995 - type: map_at_3 value: 52.815 - type: map_at_5 value: 54.893 - type: mrr_at_1 value: 74.693 - type: mrr_at_10 value: 81.128 - type: mrr_at_100 value: 81.356 - type: mrr_at_1000 value: 81.363 - type: mrr_at_3 value: 80.05600000000001 - type: mrr_at_5 value: 80.74 - type: ndcg_at_1 value: 74.693 - type: ndcg_at_10 value: 65.249 - type: ndcg_at_100 value: 68.357 - type: ndcg_at_1000 value: 69.64200000000001 - type: ndcg_at_3 value: 60.377 - type: ndcg_at_5 value: 63.044 - type: precision_at_1 value: 74.693 - type: precision_at_10 value: 13.630999999999998 - type: precision_at_100 value: 1.606 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 38.222 - type: precision_at_5 value: 25.040000000000003 - type: recall_at_1 value: 37.346000000000004 - type: recall_at_10 value: 68.157 - type: recall_at_100 value: 80.297 - type: recall_at_1000 value: 88.832 - type: recall_at_3 value: 57.333 - type: recall_at_5 value: 62.6 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 62.80240000000001 - type: ap value: 58.22949464075975 - type: f1 value: 62.55694937343487 - task: type: Retrieval dataset: type: mteb/msmarco name: MTEB MSMARCO config: default split: dev revision: c5a29a104738b98a9e76336939199e264163d4a0 metrics: - type: map_at_1 value: 20.918 - type: map_at_10 value: 32.732 - type: map_at_100 value: 33.922000000000004 - type: map_at_1000 value: 33.976 - type: map_at_3 value: 29.051 - type: map_at_5 value: 31.101 - type: mrr_at_1 value: 21.418 - type: mrr_at_10 value: 33.284000000000006 - type: mrr_at_100 value: 34.426 - type: mrr_at_1000 value: 34.473 - type: mrr_at_3 value: 29.644 - type: mrr_at_5 value: 31.691000000000003 - type: ndcg_at_1 value: 21.418 - type: ndcg_at_10 value: 39.427 - type: ndcg_at_100 value: 45.190999999999995 - type: ndcg_at_1000 value: 46.544000000000004 - type: ndcg_at_3 value: 31.885 - type: ndcg_at_5 value: 35.555 - type: precision_at_1 value: 21.418 - type: precision_at_10 value: 6.254999999999999 - type: precision_at_100 value: 0.915 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 13.591000000000001 - type: precision_at_5 value: 10.011000000000001 - type: recall_at_1 value: 20.918 - type: recall_at_10 value: 60.074000000000005 - type: recall_at_100 value: 86.726 - type: recall_at_1000 value: 97.116 - type: recall_at_3 value: 39.506 - type: recall_at_5 value: 48.319 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.79799361605106 - type: f1 value: 90.0757957511057 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 58.00501595987233 - type: f1 value: 39.85731569133947 - task: type: Classification dataset: type: masakhane/masakhanews name: MTEB MasakhaNEWSClassification (eng) config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: accuracy value: 77.10970464135022 - type: f1 value: 76.12037616356896 - task: type: Clustering dataset: type: masakhane/masakhanews name: MTEB MasakhaNEWSClusteringP2P (eng) config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: v_measure value: 69.81323966287493 - task: type: Clustering dataset: type: masakhane/masakhanews name: MTEB MasakhaNEWSClusteringS2S (eng) config: eng split: test revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 metrics: - type: v_measure value: 33.112774215788455 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.51042367182246 - type: f1 value: 60.99310361578824 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.0053799596503 - type: f1 value: 69.7794673003686 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 30.56899174856954 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 26.21848014733929 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.256308756916646 - type: mrr value: 31.123872086825656 - task: type: Retrieval dataset: type: mteb/nfcorpus name: MTEB NFCorpus config: default split: test revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 metrics: - type: map_at_1 value: 5.07 - type: map_at_10 value: 11.286999999999999 - type: map_at_100 value: 13.630999999999998 - type: map_at_1000 value: 14.844 - type: map_at_3 value: 8.395 - type: map_at_5 value: 9.721 - type: mrr_at_1 value: 41.486000000000004 - type: mrr_at_10 value: 51.041000000000004 - type: mrr_at_100 value: 51.661 - type: mrr_at_1000 value: 51.7 - type: mrr_at_3 value: 49.226 - type: mrr_at_5 value: 50.526 - type: ndcg_at_1 value: 39.783 - type: ndcg_at_10 value: 30.885 - type: ndcg_at_100 value: 27.459 - type: ndcg_at_1000 value: 35.988 - type: ndcg_at_3 value: 36.705 - type: ndcg_at_5 value: 34.156 - type: precision_at_1 value: 41.486000000000004 - type: precision_at_10 value: 22.415 - type: precision_at_100 value: 6.819999999999999 - type: precision_at_1000 value: 1.8980000000000001 - type: precision_at_3 value: 34.572 - type: precision_at_5 value: 29.287999999999997 - type: recall_at_1 value: 5.07 - type: recall_at_10 value: 14.576 - type: recall_at_100 value: 27.112000000000002 - type: recall_at_1000 value: 57.995 - type: recall_at_3 value: 9.242 - type: recall_at_5 value: 11.668000000000001 - task: type: Retrieval dataset: type: mteb/nq name: MTEB NQ config: default split: test revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 metrics: - type: map_at_1 value: 32.263999999999996 - type: map_at_10 value: 47.219 - type: map_at_100 value: 48.209999999999994 - type: map_at_1000 value: 48.24 - type: map_at_3 value: 42.905 - type: map_at_5 value: 45.501000000000005 - type: mrr_at_1 value: 36.153 - type: mrr_at_10 value: 49.636 - type: mrr_at_100 value: 50.357 - type: mrr_at_1000 value: 50.378 - type: mrr_at_3 value: 46.094 - type: mrr_at_5 value: 48.233 - type: ndcg_at_1 value: 36.124 - type: ndcg_at_10 value: 54.764 - type: ndcg_at_100 value: 58.867999999999995 - type: ndcg_at_1000 value: 59.548 - type: ndcg_at_3 value: 46.717999999999996 - type: ndcg_at_5 value: 50.981 - type: precision_at_1 value: 36.124 - type: precision_at_10 value: 8.931000000000001 - type: precision_at_100 value: 1.126 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 21.051000000000002 - type: precision_at_5 value: 15.104000000000001 - type: recall_at_1 value: 32.263999999999996 - type: recall_at_10 value: 75.39099999999999 - type: recall_at_100 value: 93.038 - type: recall_at_1000 value: 98.006 - type: recall_at_3 value: 54.562999999999995 - type: recall_at_5 value: 64.352 - task: type: Classification dataset: type: ag_news name: MTEB NewsClassification config: default split: test revision: eb185aade064a813bc0b7f42de02595523103ca4 metrics: - type: accuracy value: 77.75 - type: f1 value: 77.504243291547 - task: type: PairClassification dataset: type: GEM/opusparcus name: MTEB OpusparcusPC (en) config: en split: test revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a metrics: - type: cos_sim_accuracy value: 99.89816700610999 - type: cos_sim_ap value: 100 - type: cos_sim_f1 value: 99.9490575649516 - type: cos_sim_precision value: 100 - type: cos_sim_recall value: 99.89816700610999 - type: dot_accuracy value: 99.89816700610999 - type: dot_ap value: 100 - type: dot_f1 value: 99.9490575649516 - type: dot_precision value: 100 - type: dot_recall value: 99.89816700610999 - type: euclidean_accuracy value: 99.89816700610999 - type: euclidean_ap value: 100 - type: euclidean_f1 value: 99.9490575649516 - type: euclidean_precision value: 100 - type: euclidean_recall value: 99.89816700610999 - type: manhattan_accuracy value: 99.89816700610999 - type: manhattan_ap value: 100 - type: manhattan_f1 value: 99.9490575649516 - type: manhattan_precision value: 100 - type: manhattan_recall value: 99.89816700610999 - type: max_accuracy value: 99.89816700610999 - type: max_ap value: 100 - type: max_f1 value: 99.9490575649516 - task: type: PairClassification dataset: type: paws-x name: MTEB PawsX (en) config: en split: test revision: 8a04d940a42cd40658986fdd8e3da561533a3646 metrics: - type: cos_sim_accuracy value: 61.75000000000001 - type: cos_sim_ap value: 57.9482264289061 - type: cos_sim_f1 value: 62.444061962134256 - type: cos_sim_precision value: 45.3953953953954 - type: cos_sim_recall value: 100 - type: dot_accuracy value: 61.75000000000001 - type: dot_ap value: 57.94808038610475 - type: dot_f1 value: 62.444061962134256 - type: dot_precision value: 45.3953953953954 - type: dot_recall value: 100 - type: euclidean_accuracy value: 61.75000000000001 - type: euclidean_ap value: 57.94808038610475 - type: euclidean_f1 value: 62.444061962134256 - type: euclidean_precision value: 45.3953953953954 - type: euclidean_recall value: 100 - type: manhattan_accuracy value: 61.7 - type: manhattan_ap value: 57.996119308184966 - type: manhattan_f1 value: 62.46078773091669 - type: manhattan_precision value: 45.66768603465851 - type: manhattan_recall value: 98.78721058434398 - type: max_accuracy value: 61.75000000000001 - type: max_ap value: 57.996119308184966 - type: max_f1 value: 62.46078773091669 - task: type: Retrieval dataset: type: mteb/quora name: MTEB QuoraRetrieval config: default split: test revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 metrics: - type: map_at_1 value: 69.001 - type: map_at_10 value: 82.573 - type: map_at_100 value: 83.226 - type: map_at_1000 value: 83.246 - type: map_at_3 value: 79.625 - type: map_at_5 value: 81.491 - type: mrr_at_1 value: 79.44 - type: mrr_at_10 value: 85.928 - type: mrr_at_100 value: 86.05199999999999 - type: mrr_at_1000 value: 86.054 - type: mrr_at_3 value: 84.847 - type: mrr_at_5 value: 85.596 - type: ndcg_at_1 value: 79.41 - type: ndcg_at_10 value: 86.568 - type: ndcg_at_100 value: 87.965 - type: ndcg_at_1000 value: 88.134 - type: ndcg_at_3 value: 83.55900000000001 - type: ndcg_at_5 value: 85.244 - type: precision_at_1 value: 79.41 - type: precision_at_10 value: 13.108 - type: precision_at_100 value: 1.509 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 36.443 - type: precision_at_5 value: 24.03 - type: recall_at_1 value: 69.001 - type: recall_at_10 value: 94.132 - type: recall_at_100 value: 99.043 - type: recall_at_1000 value: 99.878 - type: recall_at_3 value: 85.492 - type: recall_at_5 value: 90.226 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 48.3161352736264 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 57.83784484156747 - task: type: Retrieval dataset: type: mteb/scidocs name: MTEB SCIDOCS config: default split: test revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 metrics: - type: map_at_1 value: 4.403 - type: map_at_10 value: 10.922 - type: map_at_100 value: 12.626000000000001 - type: map_at_1000 value: 12.883 - type: map_at_3 value: 7.982 - type: map_at_5 value: 9.442 - type: mrr_at_1 value: 21.7 - type: mrr_at_10 value: 31.653 - type: mrr_at_100 value: 32.757999999999996 - type: mrr_at_1000 value: 32.824999999999996 - type: mrr_at_3 value: 28.266999999999996 - type: mrr_at_5 value: 30.127 - type: ndcg_at_1 value: 21.7 - type: ndcg_at_10 value: 18.355 - type: ndcg_at_100 value: 25.228 - type: ndcg_at_1000 value: 30.164 - type: ndcg_at_3 value: 17.549 - type: ndcg_at_5 value: 15.260000000000002 - type: precision_at_1 value: 21.7 - type: precision_at_10 value: 9.47 - type: precision_at_100 value: 1.9290000000000003 - type: precision_at_1000 value: 0.312 - type: precision_at_3 value: 16.3 - type: precision_at_5 value: 13.28 - type: recall_at_1 value: 4.403 - type: recall_at_10 value: 19.18 - type: recall_at_100 value: 39.182 - type: recall_at_1000 value: 63.378 - type: recall_at_3 value: 9.934999999999999 - type: recall_at_5 value: 13.459999999999999 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 76.90841073432534 - type: cos_sim_spearman value: 69.2566375434526 - type: euclidean_pearson value: 73.00183878559413 - type: euclidean_spearman value: 69.25664656235413 - type: manhattan_pearson value: 72.89594756197533 - type: manhattan_spearman value: 69.23247111043545 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 69.60878511794063 - type: cos_sim_spearman value: 65.89916377105551 - type: euclidean_pearson value: 66.90761876557181 - type: euclidean_spearman value: 65.89915018368384 - type: manhattan_pearson value: 66.78502575257721 - type: manhattan_spearman value: 65.79977053467938 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 77.2869334987418 - type: cos_sim_spearman value: 77.86961921643416 - type: euclidean_pearson value: 77.43179820479914 - type: euclidean_spearman value: 77.86961921643416 - type: manhattan_pearson value: 77.18900647348373 - type: manhattan_spearman value: 77.61209060062608 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 76.26453932960364 - type: cos_sim_spearman value: 72.81574657995401 - type: euclidean_pearson value: 75.0708953437423 - type: euclidean_spearman value: 72.81574657995401 - type: manhattan_pearson value: 74.88396609999512 - type: manhattan_spearman value: 72.65437562156805 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 82.37827653919395 - type: cos_sim_spearman value: 83.4885552472602 - type: euclidean_pearson value: 82.89377087926749 - type: euclidean_spearman value: 83.4885552472602 - type: manhattan_pearson value: 82.82440771787735 - type: manhattan_spearman value: 83.41449537888975 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 78.7995043673964 - type: cos_sim_spearman value: 80.57804447517638 - type: euclidean_pearson value: 80.03013884278195 - type: euclidean_spearman value: 80.57804447517638 - type: manhattan_pearson value: 80.13406111544424 - type: manhattan_spearman value: 80.65354602648962 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 83.63565989937278 - type: cos_sim_spearman value: 84.4948593656943 - type: euclidean_pearson value: 84.68743074820951 - type: euclidean_spearman value: 84.4948593656943 - type: manhattan_pearson value: 84.43639397781811 - type: manhattan_spearman value: 84.32595552115242 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 65.06382649277246 - type: cos_sim_spearman value: 66.28447782018655 - type: euclidean_pearson value: 67.09895930908392 - type: euclidean_spearman value: 66.28447782018655 - type: manhattan_pearson value: 66.96342453888376 - type: manhattan_spearman value: 66.33876259551842 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 78.43883428940346 - type: cos_sim_spearman value: 79.18395553127085 - type: euclidean_pearson value: 79.22986635457109 - type: euclidean_spearman value: 79.18395553127085 - type: manhattan_pearson value: 79.10921229934691 - type: manhattan_spearman value: 79.02283553930171 - task: type: STS dataset: type: PhilipMay/stsb_multi_mt name: MTEB STSBenchmarkMultilingualSTS (en) config: en split: test revision: 93d57ef91790589e3ce9c365164337a8a78b7632 metrics: - type: cos_sim_pearson value: 78.43883433444418 - type: cos_sim_spearman value: 79.18395553127085 - type: euclidean_pearson value: 79.22986642351681 - type: euclidean_spearman value: 79.18395553127085 - type: manhattan_pearson value: 79.10921236746302 - type: manhattan_spearman value: 79.02283553930171 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 76.9361627171417 - type: mrr value: 93.06577046773126 - task: type: Retrieval dataset: type: mteb/scifact name: MTEB SciFact config: default split: test revision: 0228b52cf27578f30900b9e5271d331663a030d7 metrics: - type: map_at_1 value: 50.693999999999996 - type: map_at_10 value: 59.784000000000006 - type: map_at_100 value: 60.443000000000005 - type: map_at_1000 value: 60.480000000000004 - type: map_at_3 value: 57.028 - type: map_at_5 value: 58.306999999999995 - type: mrr_at_1 value: 53.333 - type: mrr_at_10 value: 61.565000000000005 - type: mrr_at_100 value: 62.095 - type: mrr_at_1000 value: 62.131 - type: mrr_at_3 value: 59.721999999999994 - type: mrr_at_5 value: 60.589000000000006 - type: ndcg_at_1 value: 53.333 - type: ndcg_at_10 value: 64.512 - type: ndcg_at_100 value: 67.366 - type: ndcg_at_1000 value: 68.46799999999999 - type: ndcg_at_3 value: 59.748999999999995 - type: ndcg_at_5 value: 61.526 - type: precision_at_1 value: 53.333 - type: precision_at_10 value: 8.733 - type: precision_at_100 value: 1.027 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 23.222 - type: precision_at_5 value: 15.2 - type: recall_at_1 value: 50.693999999999996 - type: recall_at_10 value: 77.333 - type: recall_at_100 value: 90.10000000000001 - type: recall_at_1000 value: 99 - type: recall_at_3 value: 64.39399999999999 - type: recall_at_5 value: 68.7 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.81386138613861 - type: cos_sim_ap value: 94.96375600031361 - type: cos_sim_f1 value: 90.36885245901641 - type: cos_sim_precision value: 92.64705882352942 - type: cos_sim_recall value: 88.2 - type: dot_accuracy value: 99.81386138613861 - type: dot_ap value: 94.96375600031361 - type: dot_f1 value: 90.36885245901641 - type: dot_precision value: 92.64705882352942 - type: dot_recall value: 88.2 - type: euclidean_accuracy value: 99.81386138613861 - type: euclidean_ap value: 94.96375600031361 - type: euclidean_f1 value: 90.36885245901641 - type: euclidean_precision value: 92.64705882352942 - type: euclidean_recall value: 88.2 - type: manhattan_accuracy value: 99.81287128712871 - type: manhattan_ap value: 94.92563500640084 - type: manhattan_f1 value: 90.27277406073082 - type: manhattan_precision value: 93.00106044538707 - type: manhattan_recall value: 87.7 - type: max_accuracy value: 99.81386138613861 - type: max_ap value: 94.96375600031361 - type: max_f1 value: 90.36885245901641 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 57.486984956276274 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.58453023612073 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 50.16317315282306 - type: mrr value: 50.82617137764197 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.2927995133324 - type: cos_sim_spearman value: 30.09648622523191 - type: dot_pearson value: 30.29279853541771 - type: dot_spearman value: 30.09648622523191 - task: type: Retrieval dataset: type: mteb/trec-covid name: MTEB TRECCOVID config: default split: test revision: bb9466bac8153a0349341eb1b22e06409e78ef4e metrics: - type: map_at_1 value: 0.23500000000000001 - type: map_at_10 value: 2.01 - type: map_at_100 value: 12.064 - type: map_at_1000 value: 27.437 - type: map_at_3 value: 0.6649999999999999 - type: map_at_5 value: 1.0959999999999999 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 92.667 - type: mrr_at_100 value: 92.667 - type: mrr_at_1000 value: 92.667 - type: mrr_at_3 value: 91.667 - type: mrr_at_5 value: 92.667 - type: ndcg_at_1 value: 84 - type: ndcg_at_10 value: 79.431 - type: ndcg_at_100 value: 60.914 - type: ndcg_at_1000 value: 52.005 - type: ndcg_at_3 value: 82.285 - type: ndcg_at_5 value: 81.565 - type: precision_at_1 value: 88 - type: precision_at_10 value: 84.8 - type: precision_at_100 value: 62.32 - type: precision_at_1000 value: 23.014000000000003 - type: precision_at_3 value: 86.667 - type: precision_at_5 value: 87.2 - type: recall_at_1 value: 0.23500000000000001 - type: recall_at_10 value: 2.19 - type: recall_at_100 value: 14.904 - type: recall_at_1000 value: 47.875 - type: recall_at_3 value: 0.695 - type: recall_at_5 value: 1.165 - task: type: Retrieval dataset: type: mteb/touche2020 name: MTEB Touche2020 config: default split: test revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f metrics: - type: map_at_1 value: 3.639 - type: map_at_10 value: 14.184 - type: map_at_100 value: 20.61 - type: map_at_1000 value: 22.377 - type: map_at_3 value: 9.163 - type: map_at_5 value: 10.773000000000001 - type: mrr_at_1 value: 46.939 - type: mrr_at_10 value: 59.345000000000006 - type: mrr_at_100 value: 60.07599999999999 - type: mrr_at_1000 value: 60.07599999999999 - type: mrr_at_3 value: 55.782 - type: mrr_at_5 value: 58.231 - type: ndcg_at_1 value: 41.837 - type: ndcg_at_10 value: 32.789 - type: ndcg_at_100 value: 42.232 - type: ndcg_at_1000 value: 53.900999999999996 - type: ndcg_at_3 value: 41.963 - type: ndcg_at_5 value: 35.983 - type: precision_at_1 value: 46.939 - type: precision_at_10 value: 28.163 - type: precision_at_100 value: 8.102 - type: precision_at_1000 value: 1.59 - type: precision_at_3 value: 44.897999999999996 - type: precision_at_5 value: 34.694 - type: recall_at_1 value: 3.639 - type: recall_at_10 value: 19.308 - type: recall_at_100 value: 48.992000000000004 - type: recall_at_1000 value: 84.59400000000001 - type: recall_at_3 value: 9.956 - type: recall_at_5 value: 12.33 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 64.305 - type: ap value: 11.330746746072599 - type: f1 value: 49.290704382387865 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 56.1941143180532 - type: f1 value: 56.40189765095578 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 36.28189332526842 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 83.1912737676581 - type: cos_sim_ap value: 64.31536990146257 - type: cos_sim_f1 value: 61.095167030191696 - type: cos_sim_precision value: 54.074375127006704 - type: cos_sim_recall value: 70.21108179419525 - type: dot_accuracy value: 83.1912737676581 - type: dot_ap value: 64.31539216162541 - type: dot_f1 value: 61.095167030191696 - type: dot_precision value: 54.074375127006704 - type: dot_recall value: 70.21108179419525 - type: euclidean_accuracy value: 83.1912737676581 - type: euclidean_ap value: 64.31538391358727 - type: euclidean_f1 value: 61.095167030191696 - type: euclidean_precision value: 54.074375127006704 - type: euclidean_recall value: 70.21108179419525 - type: manhattan_accuracy value: 83.07206294331525 - type: manhattan_ap value: 64.14646315556838 - type: manhattan_f1 value: 61.194029850746254 - type: manhattan_precision value: 54.166666666666664 - type: manhattan_recall value: 70.31662269129288 - type: max_accuracy value: 83.1912737676581 - type: max_ap value: 64.31539216162541 - type: max_f1 value: 61.194029850746254 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.38242713548337 - type: cos_sim_ap value: 84.70041255196017 - type: cos_sim_f1 value: 77.13222561986515 - type: cos_sim_precision value: 73.95266690215472 - type: cos_sim_recall value: 80.59747459193102 - type: dot_accuracy value: 88.38242713548337 - type: dot_ap value: 84.7004118720222 - type: dot_f1 value: 77.13222561986515 - type: dot_precision value: 73.95266690215472 - type: dot_recall value: 80.59747459193102 - type: euclidean_accuracy value: 88.38242713548337 - type: euclidean_ap value: 84.70041593996575 - type: euclidean_f1 value: 77.13222561986515 - type: euclidean_precision value: 73.95266690215472 - type: euclidean_recall value: 80.59747459193102 - type: manhattan_accuracy value: 88.36108200411378 - type: manhattan_ap value: 84.66897701572054 - type: manhattan_f1 value: 77.00707640360645 - type: manhattan_precision value: 72.17695778062082 - type: manhattan_recall value: 82.53002771789343 - type: max_accuracy value: 88.38242713548337 - type: max_ap value: 84.70041593996575 - type: max_f1 value: 77.13222561986515 - task: type: Clustering dataset: type: jinaai/cities_wiki_clustering name: MTEB WikiCitiesClustering config: default split: test revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa metrics: - type: v_measure value: 81.46426354153643 ---