Upload 9 files
Browse files- .gitattributes +0 -1
- README.md +71 -0
- config.json +82 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- AyoubChLin/CNN_News_Articles_2011-2022
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
pipeline_tag: text-classification
|
10 |
+
tags:
|
11 |
+
- news classification
|
12 |
+
widget:
|
13 |
+
- text: money in the pocket
|
14 |
+
- text: no one can win this cup in quatar..
|
15 |
+
---
|
16 |
+
# Fine-Tuned BART Model for Text Classification on CNN News Articles
|
17 |
+
|
18 |
+
|
19 |
+
This is a fine-tuned BART (Bidirectional and Auto-Regressive Transformers) model for text classification on CNN news articles. The model was fine-tuned on a dataset of CNN news articles with labels indicating the article topic, using a batch size of 32, learning rate of 6e-5, and trained for one epoch.
|
20 |
+
|
21 |
+
## How to Use
|
22 |
+
|
23 |
+
### Install
|
24 |
+
|
25 |
+
```bash
|
26 |
+
pip install transformers
|
27 |
+
```
|
28 |
+
|
29 |
+
### Example Usage
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("IT-community/BART_cnn_news_text_classification")
|
35 |
+
model = AutoModelForSequenceClassification.from_pretrained("IT-community/BART_cnn_news_text_classification")
|
36 |
+
|
37 |
+
# Tokenize input text
|
38 |
+
text = "This is an example CNN news article about politics."
|
39 |
+
inputs = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
40 |
+
|
41 |
+
# Make prediction
|
42 |
+
outputs = model(inputs["input_ids"], attention_mask=inputs["attention_mask"])
|
43 |
+
predicted_label = torch.argmax(outputs.logits)
|
44 |
+
|
45 |
+
print(predicted_label)
|
46 |
+
```
|
47 |
+
## Evaluation
|
48 |
+
|
49 |
+
The model achieved the following performance metrics on the test set:
|
50 |
+
|
51 |
+
Accuracy: 0.9591836734693877
|
52 |
+
|
53 |
+
F1-score: 0.958301875401112
|
54 |
+
|
55 |
+
Recall: 0.9591836734693877
|
56 |
+
|
57 |
+
Precision: 0.9579673040369542
|
58 |
+
|
59 |
+
|
60 |
+
## About Us
|
61 |
+
|
62 |
+
We are a scientific club from Saad Dahleb Blida University named IT Community, created in 2016 by students. We are interested in all IT fields,
|
63 |
+
This work was done by IT Community Club.
|
64 |
+
|
65 |
+
### Contributions
|
66 |
+
|
67 |
+
[Cherguelaine Ayoub](https://huggingface.co/AyoubChLin):
|
68 |
+
|
69 |
+
- Added preprocessing code for CNN news articles
|
70 |
+
|
71 |
+
- Improved model performance with additional fine-tuning on a larger dataset
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "ModelTC/bart-base-mnli",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"activation_function": "gelu",
|
5 |
+
"add_bias_logits": false,
|
6 |
+
"add_final_layer_norm": false,
|
7 |
+
"architectures": [
|
8 |
+
"BartForSequenceClassification"
|
9 |
+
],
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"bos_token_id": 0,
|
12 |
+
"classif_dropout": 0.1,
|
13 |
+
"classifier_dropout": 0.0,
|
14 |
+
"d_model": 768,
|
15 |
+
"decoder_attention_heads": 12,
|
16 |
+
"decoder_ffn_dim": 3072,
|
17 |
+
"decoder_layerdrop": 0.0,
|
18 |
+
"decoder_layers": 6,
|
19 |
+
"decoder_start_token_id": 2,
|
20 |
+
"dropout": 0.1,
|
21 |
+
"early_stopping": true,
|
22 |
+
"encoder_attention_heads": 12,
|
23 |
+
"encoder_ffn_dim": 3072,
|
24 |
+
"encoder_layerdrop": 0.0,
|
25 |
+
"encoder_layers": 6,
|
26 |
+
"eos_token_id": 2,
|
27 |
+
"finetuning_task": "mnli",
|
28 |
+
"forced_eos_token_id": 2,
|
29 |
+
"gradient_checkpointing": false,
|
30 |
+
"id2label": {
|
31 |
+
"0": "business",
|
32 |
+
"1": "entertainment",
|
33 |
+
"2": "health",
|
34 |
+
"3": "news",
|
35 |
+
"4": "politics",
|
36 |
+
"5": "sport"
|
37 |
+
},
|
38 |
+
"init_std": 0.02,
|
39 |
+
"is_encoder_decoder": true,
|
40 |
+
"label2id": {
|
41 |
+
"business": 0,
|
42 |
+
"entertainment": 1,
|
43 |
+
"health": 2,
|
44 |
+
"news": 3,
|
45 |
+
"politics": 4,
|
46 |
+
"sport": 5
|
47 |
+
},
|
48 |
+
"max_position_embeddings": 1024,
|
49 |
+
"model_type": "bart",
|
50 |
+
"no_repeat_ngram_size": 3,
|
51 |
+
"normalize_before": false,
|
52 |
+
"normalize_embedding": true,
|
53 |
+
"num_beams": 4,
|
54 |
+
"num_hidden_layers": 6,
|
55 |
+
"pad_token_id": 1,
|
56 |
+
"problem_type": "single_label_classification",
|
57 |
+
"scale_embedding": false,
|
58 |
+
"task_specific_params": {
|
59 |
+
"summarization": {
|
60 |
+
"length_penalty": 1.0,
|
61 |
+
"max_length": 128,
|
62 |
+
"min_length": 12,
|
63 |
+
"num_beams": 4
|
64 |
+
},
|
65 |
+
"summarization_cnn": {
|
66 |
+
"length_penalty": 2.0,
|
67 |
+
"max_length": 142,
|
68 |
+
"min_length": 56,
|
69 |
+
"num_beams": 4
|
70 |
+
},
|
71 |
+
"summarization_xsum": {
|
72 |
+
"length_penalty": 1.0,
|
73 |
+
"max_length": 62,
|
74 |
+
"min_length": 11,
|
75 |
+
"num_beams": 6
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"torch_dtype": "float32",
|
79 |
+
"transformers_version": "4.27.4",
|
80 |
+
"use_cache": true,
|
81 |
+
"vocab_size": 50265
|
82 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de593ead7b6f63572ead1ddbf19fc10ff7160670e44472e6fffaab205db74585
|
3 |
+
size 560151849
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<s>",
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"errors": "replace",
|
7 |
+
"mask_token": "<mask>",
|
8 |
+
"model_max_length": 1000000000000000019884624838656,
|
9 |
+
"pad_token": "<pad>",
|
10 |
+
"sep_token": "</s>",
|
11 |
+
"special_tokens_map_file": null,
|
12 |
+
"tokenizer_class": "BartTokenizer",
|
13 |
+
"trim_offsets": true,
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|