File size: 3,489 Bytes
4a12264
135bff2
 
 
 
 
 
 
 
4a12264
 
135bff2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: shawgpt-ft
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# shawgpt-ft

This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4358

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6983        | 1.0   | 1    | 3.6528          |
| 3.5663        | 2.0   | 2    | 3.5662          |
| 3.554         | 3.0   | 3    | 3.3946          |
| 3.3511        | 4.0   | 4    | 3.2324          |
| 3.271         | 5.0   | 5    | 3.0797          |
| 3.0504        | 6.0   | 6    | 2.9379          |
| 2.9238        | 7.0   | 7    | 2.8082          |
| 2.7588        | 8.0   | 8    | 2.6900          |
| 2.6477        | 9.0   | 9    | 2.5812          |
| 2.5407        | 10.0  | 10   | 2.4791          |
| 2.4989        | 11.0  | 11   | 2.3837          |
| 2.3429        | 12.0  | 12   | 2.3018          |
| 2.2806        | 13.0  | 13   | 2.2213          |
| 2.1603        | 14.0  | 14   | 2.1381          |
| 2.1297        | 15.0  | 15   | 2.0542          |
| 2.0215        | 16.0  | 16   | 1.9790          |
| 1.9543        | 17.0  | 17   | 1.9113          |
| 1.8405        | 18.0  | 18   | 1.8506          |
| 1.7458        | 19.0  | 19   | 1.7989          |
| 1.6685        | 20.0  | 20   | 1.7535          |
| 1.7441        | 21.0  | 21   | 1.7127          |
| 1.5727        | 22.0  | 22   | 1.6772          |
| 1.6027        | 23.0  | 23   | 1.6452          |
| 1.5803        | 24.0  | 24   | 1.6143          |
| 1.589         | 25.0  | 25   | 1.5838          |
| 1.512         | 26.0  | 26   | 1.5563          |
| 1.4089        | 27.0  | 27   | 1.5346          |
| 1.4374        | 28.0  | 28   | 1.5160          |
| 1.3226        | 29.0  | 29   | 1.4998          |
| 1.3265        | 30.0  | 30   | 1.4862          |
| 1.3214        | 31.0  | 31   | 1.4750          |
| 1.4226        | 32.0  | 32   | 1.4657          |
| 1.4556        | 33.0  | 33   | 1.4583          |
| 1.3064        | 34.0  | 34   | 1.4522          |
| 1.2501        | 35.0  | 35   | 1.4472          |
| 1.3525        | 36.0  | 36   | 1.4432          |
| 1.2416        | 37.0  | 37   | 1.4402          |
| 1.3267        | 38.0  | 38   | 1.4380          |
| 1.2629        | 39.0  | 39   | 1.4365          |
| 1.2634        | 40.0  | 40   | 1.4358          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1