File size: 3,489 Bytes
4a12264 135bff2 4a12264 135bff2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
base_model: TheBloke/Mistral-7B-Instruct-v0.2-GPTQ
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: shawgpt-ft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# shawgpt-ft
This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4358
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6983 | 1.0 | 1 | 3.6528 |
| 3.5663 | 2.0 | 2 | 3.5662 |
| 3.554 | 3.0 | 3 | 3.3946 |
| 3.3511 | 4.0 | 4 | 3.2324 |
| 3.271 | 5.0 | 5 | 3.0797 |
| 3.0504 | 6.0 | 6 | 2.9379 |
| 2.9238 | 7.0 | 7 | 2.8082 |
| 2.7588 | 8.0 | 8 | 2.6900 |
| 2.6477 | 9.0 | 9 | 2.5812 |
| 2.5407 | 10.0 | 10 | 2.4791 |
| 2.4989 | 11.0 | 11 | 2.3837 |
| 2.3429 | 12.0 | 12 | 2.3018 |
| 2.2806 | 13.0 | 13 | 2.2213 |
| 2.1603 | 14.0 | 14 | 2.1381 |
| 2.1297 | 15.0 | 15 | 2.0542 |
| 2.0215 | 16.0 | 16 | 1.9790 |
| 1.9543 | 17.0 | 17 | 1.9113 |
| 1.8405 | 18.0 | 18 | 1.8506 |
| 1.7458 | 19.0 | 19 | 1.7989 |
| 1.6685 | 20.0 | 20 | 1.7535 |
| 1.7441 | 21.0 | 21 | 1.7127 |
| 1.5727 | 22.0 | 22 | 1.6772 |
| 1.6027 | 23.0 | 23 | 1.6452 |
| 1.5803 | 24.0 | 24 | 1.6143 |
| 1.589 | 25.0 | 25 | 1.5838 |
| 1.512 | 26.0 | 26 | 1.5563 |
| 1.4089 | 27.0 | 27 | 1.5346 |
| 1.4374 | 28.0 | 28 | 1.5160 |
| 1.3226 | 29.0 | 29 | 1.4998 |
| 1.3265 | 30.0 | 30 | 1.4862 |
| 1.3214 | 31.0 | 31 | 1.4750 |
| 1.4226 | 32.0 | 32 | 1.4657 |
| 1.4556 | 33.0 | 33 | 1.4583 |
| 1.3064 | 34.0 | 34 | 1.4522 |
| 1.2501 | 35.0 | 35 | 1.4472 |
| 1.3525 | 36.0 | 36 | 1.4432 |
| 1.2416 | 37.0 | 37 | 1.4402 |
| 1.3267 | 38.0 | 38 | 1.4380 |
| 1.2629 | 39.0 | 39 | 1.4365 |
| 1.2634 | 40.0 | 40 | 1.4358 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1 |