SorawitChok commited on
Commit
73c6df1
1 Parent(s): 1b5f7be

create README

Browse files
Files changed (1) hide show
  1. README.md +306 -0
README.md ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: seallms
4
+ license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
5
+ language:
6
+ - en
7
+ - zh
8
+ - vi
9
+ - id
10
+ - th
11
+ - ms
12
+ - km
13
+ - lo
14
+ - my
15
+ - tl
16
+ tags:
17
+ - multilingual
18
+ - sea
19
+ ---
20
+ <p align="center">
21
+ <img src="seal_logo.png" width="200" />
22
+ </p>
23
+
24
+ # *SeaLLM-7B-v2.5* - Large Language Models for Southeast Asia
25
+
26
+
27
+ <p align="center">
28
+ <a href="https://damo-nlp-sg.github.io/SeaLLMs/" target="_blank" rel="noopener">Website</a>
29
+ &nbsp;&nbsp;
30
+ <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5" target="_blank" rel="noopener"> 🤗 Tech Memo</a>
31
+ &nbsp;&nbsp;
32
+ <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B-v2.5" target="_blank" rel="noopener"> 🤗 DEMO</a>
33
+ &nbsp;&nbsp;
34
+ <a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a>
35
+ &nbsp;&nbsp;
36
+ <a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a>
37
+ </p>
38
+
39
+ 🔥<span style="color: #ff3860">[HOT]</span> SeaLLMs project now has a dedicated website - [damo-nlp-sg.github.io/SeaLLMs](https://damo-nlp-sg.github.io/SeaLLMs/)
40
+
41
+ We introduce [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 🇬🇧 🇨🇳 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇲🇲 🇵🇭. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc.
42
+
43
+ ### Highlights
44
+ * [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5) outperforms GPT-3.5 and achieves 7B SOTA on most multilingual knowledge benchmarks for SEA languages (MMLU, M3Exam & VMLU).
45
+ * It achieves 79.0 and 34.9 on GSM8K and MATH, surpassing GPT-3.5 in MATH.
46
+
47
+ ### Release and DEMO
48
+
49
+ - DEMO:
50
+ - [SeaLLMs/SeaLLM-7B-v2.5](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B-v2.5).
51
+ - [SeaLLMs/SeaLLM-7B | SeaLMMM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B) - Experimental multimodal SeaLLM.
52
+ - Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf).
53
+ - Model weights:
54
+ - [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5).
55
+ - [SeaLLM-7B-v2.5-GGUF](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF).
56
+ - Run locally:
57
+ - [LM-studio](https://lmstudio.ai/):
58
+ - [SeaLLM-7B-v2.5-q4_0-chatml](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF/blob/main/seallm-7b-v2.5-chatml.Q4_K_M.gguf) with ChatML template (`<eos>` token changed to `<|im_end|>`)
59
+ - [SeaLLM-7B-v2.5-q4_0](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-GGUF/blob/main/seallm-7b-v2.5.Q4_K_M.gguf) - must use SeaLLM-7B-v2.5 chat format.
60
+ - [MLX for Apple Silicon](https://github.com/ml-explore/mlx): [SeaLLMs/SeaLLM-7B-v2.5-mlx-quantized](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5-mlx-quantized)
61
+ - Previous models:
62
+ - [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2)
63
+ - [SeaLLM-7B-v1](https://huggingface.co/SeaLLMs/SeaLLM-7B-v1)
64
+
65
+ <blockquote style="color:red">
66
+ <p><strong style="color: red">Terms of Use and License</strong>:
67
+ By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>.
68
+ </blockquote>
69
+
70
+ > **Disclaimer**:
71
+ > We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation.
72
+ > Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
73
+ > In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
74
+
75
+ > The logo was generated by DALL-E 3.
76
+
77
+
78
+ ### What's new since SeaLLM-7B-v2?
79
+
80
+ * SeaLLM-7B-v2.5 was built on top of Gemma-7b, and underwent large scale SFT and carefully designed alignment.
81
+
82
+
83
+ ## Evaluation
84
+
85
+
86
+ ### Multilingual World Knowledge
87
+
88
+
89
+ We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
90
+
91
+ | Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
92
+ |-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
93
+ | GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
94
+ | Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
95
+ | Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
96
+ | SailorLM | Multi | 52.72 | 59.76 | 67.74 | 50.14 | --- | 39.53 | 37.73
97
+ | SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
98
+ | SeaLLM-7B-v2.5 | Multi | 64.05 | 76.87 | 62.54 | 63.11 | 53.30 | 48.64 | 46.86
99
+
100
+
101
+ ### Zero-shot CoT Multilingual Math Reasoning
102
+
103
+ <!--
104
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.5** score on the GSM8K with zero-shot CoT reasoning, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **28.4** vs 18.1 scores.
105
+
106
+ ![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
107
+ -->
108
+
109
+ | Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
110
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
111
+ | GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
112
+ | Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6.0
113
+ | Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
114
+ | Qwen1.5-7B-chat | 56.8 | 15.3 | 40.0 | 2.7 | 37.7 | 9 | 36.9 | 7.7 | 21.9 | 4.7
115
+ | SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
116
+ | SeaLLM-7B-v2.5 | 78.5 | 34.9 | 51.3 | 22.1 | 72.3 | 30.2 | 71.5 | 30.1 | 62.0 | 28.4
117
+
118
+
119
+ Baselines were evaluated using their respective chat-template and system prompts ([Qwen1.5-7B-chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat/blob/main/tokenizer_config.json), [Vistral](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)).
120
+
121
+ #### Zero-shot MGSM
122
+
123
+ [SeaLLM-7B-v2.5](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2.5) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Thai.
124
+
125
+ | Model | MGSM-Zh | MGSM-Th
126
+ |-----| ----- | ---
127
+ | ChatGPT (reported) | 61.2 | 47.2
128
+ | Qwen-14B-chat | 59.6 | 28
129
+ | SeaLLM-7B-v2 | **64.8** | 62.4
130
+ | SeaLLM-7B-v2.5 | 58.0 | **64.8**
131
+
132
+
133
+ ### Sea-Bench
134
+
135
+ ![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png)
136
+
137
+
138
+ ### Usage
139
+
140
+ **IMPORTANT NOTICE for using the model**
141
+
142
+ * `<bos>` must be at start of prompt, ff your code's tokenizer does not prepend `<bos>` by default, you MUST prepend <bos> into the prompt yourself, otherwise, it would not work!
143
+ * Repitition penalty (e.g: in llama.cpp, ollama, LM-studio) must be set to **1** , otherwise will lead to degeneration!
144
+
145
+ #### Instruction format
146
+
147
+ ```python
148
+ # ! WARNING, if your code's tokenizer does not prepend <bos> by default,
149
+ # You MUST prepend <bos> into the prompt yourself, otherwise, it would not work!
150
+ prompt = """<|im_start|>system
151
+ You are a helpful assistant.<eos>
152
+ <|im_start|>user
153
+ Hello world<eos>
154
+ <|im_start|>assistant
155
+ Hi there, how can I help?<eos>"""
156
+ # <|im_start|> is not a special token.
157
+ # Transformers chat_template should be consistent with vLLM format below.
158
+ # ! ENSURE 1 and only 1 bos `<bos>` at the beginning of sequence
159
+ print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))
160
+ """
161
+ ```
162
+
163
+ #### Using transformers's chat_template
164
+ Install the latest transformers (>4.40)
165
+ ```python
166
+ from transformers import AutoModelForCausalLM, AutoTokenizer
167
+ device = "cuda" # the device to load the model onto
168
+ # use bfloat16 to ensure the best performance.
169
+ model = AutoModelForCausalLM.from_pretrained("SeaLLMs/SeaLLM-7B-v2.5", torch_dtype=torch.bfloat16, device_map=device)
170
+ tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLM-7B-v2.5")
171
+ messages = [
172
+ {"role": "system", "content": "You are a helpful assistant."},
173
+ {"role": "user", "content": "Hello world"},
174
+ {"role": "assistant", "content": "Hi there, how can I help you today?"},
175
+ {"role": "user", "content": "Explain general relativity in details."}
176
+ ]
177
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
178
+ print(tokenizer.convert_ids_to_tokens(encodeds[0]))
179
+ model_inputs = encodeds.to(device)
180
+ model.to(device)
181
+
182
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
183
+ decoded = tokenizer.batch_decode(generated_ids)
184
+ print(decoded[0])
185
+ ```
186
+ #### Using vLLM
187
+ ```python
188
+ from vllm import LLM, SamplingParams
189
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}<eos>\n"
190
+ TURN_PREFIX = "<|im_start|>{role}\n"
191
+ def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
192
+ # conversations: list of dict with key `role` and `content` (openai format)
193
+ if conversations[0]['role'] != 'system' and system_prompt is not None:
194
+ conversations = [{"role": "system", "content": system_prompt}] + conversations
195
+ text = ''
196
+ for turn_id, turn in enumerate(conversations):
197
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
198
+ text += prompt
199
+ if add_assistant_prefix:
200
+ prompt = TURN_PREFIX.format(role='assistant')
201
+ text += prompt
202
+ return text
203
+ sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['<eos>', '<|im_start|>'])
204
+ llm = LLM("SeaLLMs/SeaLLM-7B-v2.5", dtype="bfloat16")
205
+
206
+ message = "Explain general relativity in details."
207
+ prompt = seallm_chat_convo_format(message, True)
208
+ gen = llm.generate(prompt, sampling_params)
209
+
210
+ print(gen[0].outputs[0].text)
211
+ ```
212
+ #### Fine-tuning SeaLLM-7B-v2.5
213
+ Should follow the chat format and accurately mask out source tokens. Here is an example.
214
+ ```python
215
+ conversations = [
216
+ {"role": "system", "content": "You are helful assistant."},
217
+ {"role": "user", "content": "Hello world."},
218
+ {"role": "assistant", "content": "Hi there, how can I help?"},
219
+ {"role": "user", "content": "Tell me a joke."},
220
+ {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
221
+ ]
222
+ def seallm_7b_v25_tokenize_multi_turns(tokenizer, conversations, add_assistant_prefix=False):
223
+ """
224
+ Inputs:
225
+ conversations: list of dict following openai format, eg
226
+ conversations = [
227
+ {"role": "system", "content": "You are helful assistant."},
228
+ {"role": "user", "content": "Hello world."},
229
+ {"role": "assistant", "content": "Hi there, how can I help?"},
230
+ {"role": "user", "content": "Tell me a joke."},
231
+ {"role": "assistant", "content": "Why don't scientists trust atoms? Because they make up everything."},
232
+ ]
233
+ add_assistant_prefix: whether to add assistant_prefix, only for inference decoding
234
+ Outputs:
235
+ tokenize_output_sample, {
236
+ "input_ids": ...
237
+ "token_type_ids": 1 if train and 0 if masked out (not train)
238
+ }
239
+ During training, need to create a labels, with masked-out tokens = -100 to avoid loss computations.
240
+ labels = sample['input_ids'].clone()
241
+ labels[sample['token_type_ids'] == 0] = -100
242
+ """
243
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}<eos>\n"
244
+ TURN_PREFIX = "<|im_start|>{role}\n"
245
+ TURN_SUFFIX = "<eos>\n"
246
+ TURN_SUFFIX_TAKE = "<eos>"
247
+ sample = None
248
+ assistant_prefix_len = None
249
+ assistant_suffix_len = None
250
+ for turn_id, turn in enumerate(conversations):
251
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
252
+ turn_sample = tokenizer(
253
+ prompt, padding=False, truncation=False, verbose=False, add_special_tokens=False,
254
+ return_token_type_ids=True,
255
+ )
256
+ if turn['role'] == 'assistant':
257
+ if assistant_prefix_len is None:
258
+ assistant_prefix_len = len(tokenizer.encode(TURN_PREFIX.format(role=turn['role']), add_special_tokens=False))
259
+ if assistant_suffix_len is None:
260
+ assistant_suffix_len = (
261
+ len(tokenizer.encode(TURN_SUFFIX.format(role=turn['role']), add_special_tokens=False)) -
262
+ len(tokenizer.encode(TURN_SUFFIX_TAKE, add_special_tokens=False))
263
+ )
264
+ turn_sample['token_type_ids'][assistant_prefix_len:-assistant_suffix_len] = [1] * (len(turn_sample['input_ids']) - assistant_prefix_len - assistant_suffix_len)
265
+ if sample is None:
266
+ sample = turn_sample
267
+ else:
268
+ for k in turn_sample.keys():
269
+ sample[k].extend(turn_sample[k])
270
+ if add_assistant_prefix:
271
+ assistant_prefix_sample = tokenizer(
272
+ TURN_PREFIX.format(role="assistant"), padding=False, truncation=False, verbose=False, add_special_tokens=False,
273
+ return_token_type_ids=True,
274
+ )
275
+ for k in sample.keys():
276
+ sample[k].extend(assistant_prefix_sample[k])
277
+ if tokenizer.add_bos_token:
278
+ sample['input_ids'] = [tokenizer.bos_token_id] + sample['input_ids']
279
+ sample['attention_mask'] = [1] + sample['attention_mask']
280
+ sample['token_type_ids'] = [sample['token_type_ids'][0]] + sample['token_type_ids']
281
+ return sample
282
+ # ! testing
283
+ sample = seallm_7b_v25_tokenize_multi_turns(tokenizer, conversations)
284
+ tokens = tokenizer.convert_ids_to_tokens(sample['input_ids'])
285
+ pairs = [(x, y) for x, y in zip(tokens, sample['token_type_ids'])]
286
+ print(pairs)
287
+ # source and special tokens is masked out (token_type 0), only assistant with <eos> is trained (token_type 1)
288
+ # [('<bos>', 0), ('<', 0), ('|', 0), ..., ('assistant', 0), ('\n', 0), ('Hi', 1), ('▁there', 1), (',', 1), ('▁how', 1), ('▁can', 1), ('▁I', 1), ('▁help', 1), ('?', 1), ('<eos>', 1), ('\n', 0), ('<', 0), ...
289
+ ```
290
+ ## Acknowledgement to Our Linguists
291
+ We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
292
+ ## Citation
293
+ If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected])
294
+ **Author list and order will change!**
295
+ * `*` and `^` are equal contributions.
296
+ ```
297
+ @article{damonlpsg2023seallm,
298
+ author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Weiwen Xu, Hou Pong Chan,
299
+ Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
300
+ Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
301
+ Chaoqun Liu, Hang Zhang, Lidong Bing},
302
+ title = {SeaLLMs - Large Language Models for Southeast Asia},
303
+ year = 2023,
304
+ Eprint = {arXiv:2312.00738},
305
+ }
306
+ ```