Spanicin commited on
Commit
e4a981d
1 Parent(s): 51abb4e

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - merge
5
+ - mergekit
6
+ - lazymergekit
7
+ - mistralai/Mistral-7B-v0.1
8
+ - OpenPipe/mistral-ft-optimized-1218
9
+ - mlabonne/NeuralHermes-2.5-Mistral-7B
10
+ ---
11
+
12
+ # Fulcrum_Achira
13
+
14
+ Fulcrum_Achira is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
15
+ * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
16
+ * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
17
+ * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
18
+
19
+ ## 🧩 Configuration
20
+
21
+ ```yaml
22
+ slices:
23
+ - sources:
24
+ - model: mistralai/Mistral-7B-v0.1
25
+ - model: OpenPipe/mistral-ft-optimized-1218
26
+ parameters:
27
+ density: 0.5
28
+ weight: 0.5
29
+ - model: mlabonne/NeuralHermes-2.5-Mistral-7B
30
+ parameters:
31
+ density: 0.5
32
+ weight: 0.3
33
+ merge_method: ties
34
+ base_model: mistralai/Mistral-7B-v0.1
35
+ parameters:
36
+ normalize: true
37
+ dtype: bfloat16
38
+ ```
39
+
40
+ ## 💻 Usage
41
+
42
+ ```python
43
+ !pip install -qU transformers accelerate
44
+
45
+ from transformers import AutoTokenizer
46
+ import transformers
47
+ import torch
48
+
49
+ model = "Spanicin/Fulcrum_Achira"
50
+ messages = [{"role": "user", "content": "What is a large language model?"}]
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained(model)
53
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
54
+ pipeline = transformers.pipeline(
55
+ "text-generation",
56
+ model=model,
57
+ torch_dtype=torch.float16,
58
+ device_map="auto",
59
+ )
60
+
61
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
62
+ print(outputs[0]["generated_text"])
63
+ ```