SpyrosMitsis commited on
Commit
100d004
1 Parent(s): 2e59eed

PPO model for LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 274.74 +/- 25.65
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b8e98d11e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b8e98d11ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b8e98d11f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b8e98d11fc0>", "_build": "<function ActorCriticPolicy._build at 0x7b8e98d12050>", "forward": "<function ActorCriticPolicy.forward at 0x7b8e98d120e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b8e98d12170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b8e98d12200>", "_predict": "<function ActorCriticPolicy._predict at 0x7b8e98d12290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b8e98d12320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b8e98d123b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b8e98d12440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b8e98c9e200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1726135851414465868, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbk/TyuO666TTKMvX4yljxZEhQ81yWCvQAAgD8AAIA/mkgUPddULbtOLPK9+i+ZvtCqtjv7d+G8AAAAAAAAgD+mUdq9b9e1Pr54hD4jLAa/PZxOPeGzKj0AAAAAAAAAALO00b3DUYs/hT9Svo8n9b4xZ2C+poHyvQAAAAAAAAAAmmhXvfb+Nj2bkBc+e8yjvrCBRT3u9wi9AAAAAAAAAADNpTO9rn20uti94bpC3M212kQPuqD8ADoAAIA/AACAP2amLbvh2LG6bWaRusZzhLUsI5C5g2CmOQAAgD8AAIA/cL9wvuipGD+mo3Q+bwv5vqlkmryO6uU9AAAAAAAAAADaHOa9PPl4Ps7eLLzUS7u+h72avEP57LsAAAAAAAAAAPOtgb2JtsE/PZb0vgz7Qj4xtEW8En1WvQAAAAAAAAAAJiyovYKwZT5/pz4+FyXJvqIKhT3uygY9AAAAAAAAAADzPz4+fxlfP5sSyT4wGTS/542qPlvWPj4AAAAAAAAAALN2Mb4uH6Y/mzH3vh84Ar/azHi+mjx9vgAAAAAAAAAADRPavfFXDT5m3MQ9x9CavlWyVjx700+7AAAAAAAAAADzFos9j+48uur/gLx+tIQ81Pc5u4ZMaD0AAIA/AACAP+bW3L1crIk/6+Yavvno9b4AUjG+XCiYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDpB3FDOTuMAWyUS72MAXSUR0Cuaxe1a4c4dX2UKGgGR0By3BCKJl8PaAdL0mgIR0CuazDmKZUldX2UKGgGR0Bzn3q3VkMDaAdL0mgIR0Cua2p5mh/RdX2UKGgGR0BylRNfw7T2aAdL4WgIR0Cua26b4Ju3dX2UKGgGR0ByzcuZkTYeaAdLuWgIR0Cua4EleF+NdX2UKGgGR0BxIZVzZHuraAdLxGgIR0Cua4CEg4ffdX2UKGgGR0Byqs5dWyTqaAdLrmgIR0Cua+WnsLOSdX2UKGgGR0BzgfUqhDgJaAdLvmgIR0CubDTK9wm3dX2UKGgGR0Bw/dXRw6yTaAdLumgIR0CubDZbQkX2dX2UKGgGR0Bway2JBPbgaAdLsmgIR0CubHLlvIfbdX2UKGgGR0ByRwxM36yjaAdL5GgIR0CubHkbYK6XdX2UKGgGR0BzM08uBczJaAdLzWgIR0CubILdvbXZdX2UKGgGR0BzdUCU5dWyaAdLvGgIR0CubISi22G7dX2UKGgGR0BwRGZBsyi3aAdL6WgIR0CubP7V8Ti9dX2UKGgGR0BzcRH3Dej3aAdL3mgIR0CubSbiZOSGdX2UKGgGR0ByMUr5IpYtaAdLxmgIR0CubUY8U21ldX2UKGgGR0Bx3zk3juKGaAdLxWgIR0CubVs85jpcdX2UKGgGR0Bx1SDqW1MNaAdLs2gIR0CubWNIsiB5dX2UKGgGR0By69m5DqnnaAdL0WgIR0CubcfwZwXJdX2UKGgGR0Bz7JznzQNTaAdL5mgIR0CubgqwQlKLdX2UKGgGR0Byd6tuDSPVaAdL92gIR0Cubib2L5ymdX2UKGgGR0Bgdz2rXDm9aAdN6ANoCEdArm4jsF+uvHV9lChoBkdAcHwNjLB9C2gHS9ZoCEdArm5LXxvvSnV9lChoBkdAcZEkiliz9mgHS6hoCEdArm5XvUjLS3V9lChoBkdAct07jT8YRGgHS7BoCEdArm51IK+i8HV9lChoBkdAb8qOcUdq+WgHS7loCEdArm59Dx9XtHV9lChoBkdAc4DUqQRwqGgHS9VoCEdArm6NMfzSTnV9lChoBkdAc1bNFjNILGgHS99oCEdArm6lMqSX+nV9lChoBkdAceMHjZL7GmgHS5hoCEdArm6n2ugYg3V9lChoBkdAcnUYJVsDXGgHS8doCEdArm6u87IT5HV9lChoBkdAcLvvWpZOi2gHS7loCEdArm81roGIK3V9lChoBkdAc1Mh/iHZb2gHS8xoCEdArm9LCLuQZHV9lChoBkdAcSN8JD3M6mgHS8VoCEdArm9v6be/H3V9lChoBkdAc4LtK7I1cmgHS+loCEdArm/NCJGe+XV9lChoBkdAcWxSbYsd1mgHS6hoCEdArm/Zm29cr3V9lChoBkdAcDvsS00FbGgHS8doCEdArm/c32mHg3V9lChoBkdAcpxJ9RaX8mgHS7RoCEdArm/htNzr/3V9lChoBkdAbmceK8+Ro2gHS6toCEdArnATUkOZs3V9lChoBkdAcIUQ53kgfWgHS5hoCEdArnAaKtPpIXV9lChoBkdAcyZksjFAFGgHS7VoCEdArnAhFd9lVnV9lChoBkdAcBTR64UeuGgHS9FoCEdArnBA4n4O+nV9lChoBkdAcvdrhzeXRmgHS6RoCEdArnBPChvitXV9lChoBkdAb8+/D+BH1GgHS6xoCEdArnBptaY/mnV9lChoBkdAcz/eMyad+WgHS8doCEdArnByx1PnCHV9lChoBkdAcVuNxEORT2gHS85oCEdArnCNdRiw0XV9lChoBkdAb/cfzSThYWgHS+hoCEdArnD4zxgAqHV9lChoBkdAcJ/EUj9n9WgHS7NoCEdArnEGoaUA1nV9lChoBkdAcnj7XQMQVmgHS99oCEdArnGU6o2n9HV9lChoBkdAbxJ3os7MgWgHS7toCEdArnHFev6j33V9lChoBkdAcpl+aScLB2gHS7loCEdArnHDNW2gF3V9lChoBkdAczTxlQMx5GgHS8FoCEdArnHLZpSJj3V9lChoBkdAcrEjB2wFDGgHS/JoCEdArnH2TeO4onV9lChoBkdAbjCD2alUImgHS7toCEdArnIAGfPHDXV9lChoBkdAb2K1LJ0W/WgHS7BoCEdArnIZQ+EAYHV9lChoBkdAcfQrcCYCyWgHS5JoCEdArnIc7GNrCXV9lChoBkdAccbRl6JIlWgHS8toCEdArnI1n5BToHV9lChoBkdAcsDD3dsSCmgHS+NoCEdArnI+I42jwnV9lChoBkdAcrO2r4nF52gHS9JoCEdArnJO3pfQbHV9lChoBkdAcqPFNL127mgHS8JoCEdArnJW/5+H8HV9lChoBkdAcqGkY4yXU2gHS7toCEdArnJg9zOopHV9lChoBkdAcQOstCiRGWgHS7loCEdArnJk3juKGnV9lChoBkdAcDOpw0fozWgHS6BoCEdArnKeHaewtHV9lChoBkdAcnthzvJA+2gHS7NoCEdArnLV5jYqXnV9lChoBkdAcSuKTSsr/mgHS7toCEdArnODQE6kqXV9lChoBkdAc++ZXdTHbWgHS7poCEdArnOyD0163XV9lChoBkdAcfdE5hjOLWgHS7poCEdArnO7xVhkRXV9lChoBkdAcQAXE61b7mgHS6hoCEdArnPbMmnfmHV9lChoBkdAcTMjENvwVmgHS8JoCEdArnQLkdV/+nV9lChoBkdAcSP+1SflIWgHS8hoCEdArnQSXa8HwHV9lChoBkdAcV4vAXVLBmgHS+FoCEdArnQsOG0u2HV9lChoBkdAbtRaRp1zQ2gHS7xoCEdArnQ6T+vQnnV9lChoBkdAb/yQZn+Q2mgHS7NoCEdArnRLt3OfNHV9lChoBkdAcwRYEnssx2gHS8RoCEdArnRGjASFoXV9lChoBkdAcdK89wFTvWgHS9VoCEdArnRUFEAo5XV9lChoBkdAcpLpi7TUiWgHS8NoCEdArnRrpmmLtXV9lChoBkdAcsTIXCTEBWgHS8poCEdArnRp0r9VFXV9lChoBkdAbh5LbHp8nmgHS6toCEdArnR4lF+d9XV9lChoBkdAc4iOzY287WgHS+1oCEdArnTDS/j81nV9lChoBkdAcnKG6wt8NWgHS7NoCEdArnTFqHoHLXV9lChoBkdAcV+uIyj59GgHS89oCEdArnW8zyjHn3V9lChoBkdAbwAH0K7ZnWgHS79oCEdArnW/doFmnXV9lChoBkdAcz0dNWU8m2gHS7doCEdArnXF8zAN5XV9lChoBkdAcg9gRK6FumgHS8poCEdArnXXGn4wiHV9lChoBkdAcngNJvo/zWgHS55oCEdArnXoBV+7UXV9lChoBkdAchFupCKJmGgHS5doCEdArnX/1DjR2XV9lChoBkdAcDeBAOavzWgHS85oCEdArnY6vxH5J3V9lChoBkdAcVemvnr6cmgHS71oCEdArnZD6tT1kHV9lChoBkdAcZqxhlUZN2gHS8xoCEdArnZKrLhaT3V9lChoBkdAc3eiEQGwA2gHS8ZoCEdArnZJoEjgRHV9lChoBkdAc8tl/pdKNGgHS8toCEdArnZvozN2T3V9lChoBkdAcrlFxXGOuWgHS/BoCEdArnaKGxlg+nV9lChoBkdAcjJ+x4Y772gHS9FoCEdArnaoOlO45XV9lChoBkdAcdrFtsN2DGgHS+toCEdArnbVZPl+3HV9lChoBkdAccrf5DZ13mgHS8hoCEdArnbdgOSW7nV9lChoBkdAcIeOyE+PimgHS8xoCEdArnboUpNKy3V9lChoBkdAcMsXuE25x2gHS6NoCEdArneDJwKjSHV9lChoBkdAbUWvwEyLymgHS7ZoCEdArneVA9mpVHV9lChoBkdAcm5AjY7JXGgHS7toCEdArnebefqX4XV9lChoBkdAb1AJdB0IT2gHS7poCEdArnea3Zwn6XV9lChoBkdAcf+kSVW0Z2gHS8VoCEdArnfM9pyp73VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 725, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de5af375870654fc677b0e4429d9fba6fedda9f6b76b77376637d16cddfc98fe
3
+ size 147955
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b8e98d11e10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b8e98d11ea0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b8e98d11f30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b8e98d11fc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b8e98d12050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b8e98d120e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b8e98d12170>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b8e98d12200>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b8e98d12290>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b8e98d12320>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b8e98d123b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b8e98d12440>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b8e98c9e200>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2031616,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1726135851414465868,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbk/TyuO666TTKMvX4yljxZEhQ81yWCvQAAgD8AAIA/mkgUPddULbtOLPK9+i+ZvtCqtjv7d+G8AAAAAAAAgD+mUdq9b9e1Pr54hD4jLAa/PZxOPeGzKj0AAAAAAAAAALO00b3DUYs/hT9Svo8n9b4xZ2C+poHyvQAAAAAAAAAAmmhXvfb+Nj2bkBc+e8yjvrCBRT3u9wi9AAAAAAAAAADNpTO9rn20uti94bpC3M212kQPuqD8ADoAAIA/AACAP2amLbvh2LG6bWaRusZzhLUsI5C5g2CmOQAAgD8AAIA/cL9wvuipGD+mo3Q+bwv5vqlkmryO6uU9AAAAAAAAAADaHOa9PPl4Ps7eLLzUS7u+h72avEP57LsAAAAAAAAAAPOtgb2JtsE/PZb0vgz7Qj4xtEW8En1WvQAAAAAAAAAAJiyovYKwZT5/pz4+FyXJvqIKhT3uygY9AAAAAAAAAADzPz4+fxlfP5sSyT4wGTS/542qPlvWPj4AAAAAAAAAALN2Mb4uH6Y/mzH3vh84Ar/azHi+mjx9vgAAAAAAAAAADRPavfFXDT5m3MQ9x9CavlWyVjx700+7AAAAAAAAAADzFos9j+48uur/gLx+tIQ81Pc5u4ZMaD0AAIA/AACAP+bW3L1crIk/6+Yavvno9b4AUjG+XCiYvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDpB3FDOTuMAWyUS72MAXSUR0Cuaxe1a4c4dX2UKGgGR0By3BCKJl8PaAdL0mgIR0CuazDmKZUldX2UKGgGR0Bzn3q3VkMDaAdL0mgIR0Cua2p5mh/RdX2UKGgGR0BylRNfw7T2aAdL4WgIR0Cua26b4Ju3dX2UKGgGR0ByzcuZkTYeaAdLuWgIR0Cua4EleF+NdX2UKGgGR0BxIZVzZHuraAdLxGgIR0Cua4CEg4ffdX2UKGgGR0Byqs5dWyTqaAdLrmgIR0Cua+WnsLOSdX2UKGgGR0BzgfUqhDgJaAdLvmgIR0CubDTK9wm3dX2UKGgGR0Bw/dXRw6yTaAdLumgIR0CubDZbQkX2dX2UKGgGR0Bway2JBPbgaAdLsmgIR0CubHLlvIfbdX2UKGgGR0ByRwxM36yjaAdL5GgIR0CubHkbYK6XdX2UKGgGR0BzM08uBczJaAdLzWgIR0CubILdvbXZdX2UKGgGR0BzdUCU5dWyaAdLvGgIR0CubISi22G7dX2UKGgGR0BwRGZBsyi3aAdL6WgIR0CubP7V8Ti9dX2UKGgGR0BzcRH3Dej3aAdL3mgIR0CubSbiZOSGdX2UKGgGR0ByMUr5IpYtaAdLxmgIR0CubUY8U21ldX2UKGgGR0Bx3zk3juKGaAdLxWgIR0CubVs85jpcdX2UKGgGR0Bx1SDqW1MNaAdLs2gIR0CubWNIsiB5dX2UKGgGR0By69m5DqnnaAdL0WgIR0CubcfwZwXJdX2UKGgGR0Bz7JznzQNTaAdL5mgIR0CubgqwQlKLdX2UKGgGR0Byd6tuDSPVaAdL92gIR0Cubib2L5ymdX2UKGgGR0Bgdz2rXDm9aAdN6ANoCEdArm4jsF+uvHV9lChoBkdAcHwNjLB9C2gHS9ZoCEdArm5LXxvvSnV9lChoBkdAcZEkiliz9mgHS6hoCEdArm5XvUjLS3V9lChoBkdAct07jT8YRGgHS7BoCEdArm51IK+i8HV9lChoBkdAb8qOcUdq+WgHS7loCEdArm59Dx9XtHV9lChoBkdAc4DUqQRwqGgHS9VoCEdArm6NMfzSTnV9lChoBkdAc1bNFjNILGgHS99oCEdArm6lMqSX+nV9lChoBkdAceMHjZL7GmgHS5hoCEdArm6n2ugYg3V9lChoBkdAcnUYJVsDXGgHS8doCEdArm6u87IT5HV9lChoBkdAcLvvWpZOi2gHS7loCEdArm81roGIK3V9lChoBkdAc1Mh/iHZb2gHS8xoCEdArm9LCLuQZHV9lChoBkdAcSN8JD3M6mgHS8VoCEdArm9v6be/H3V9lChoBkdAc4LtK7I1cmgHS+loCEdArm/NCJGe+XV9lChoBkdAcWxSbYsd1mgHS6hoCEdArm/Zm29cr3V9lChoBkdAcDvsS00FbGgHS8doCEdArm/c32mHg3V9lChoBkdAcpxJ9RaX8mgHS7RoCEdArm/htNzr/3V9lChoBkdAbmceK8+Ro2gHS6toCEdArnATUkOZs3V9lChoBkdAcIUQ53kgfWgHS5hoCEdArnAaKtPpIXV9lChoBkdAcyZksjFAFGgHS7VoCEdArnAhFd9lVnV9lChoBkdAcBTR64UeuGgHS9FoCEdArnBA4n4O+nV9lChoBkdAcvdrhzeXRmgHS6RoCEdArnBPChvitXV9lChoBkdAb8+/D+BH1GgHS6xoCEdArnBptaY/mnV9lChoBkdAcz/eMyad+WgHS8doCEdArnByx1PnCHV9lChoBkdAcVuNxEORT2gHS85oCEdArnCNdRiw0XV9lChoBkdAb/cfzSThYWgHS+hoCEdArnD4zxgAqHV9lChoBkdAcJ/EUj9n9WgHS7NoCEdArnEGoaUA1nV9lChoBkdAcnj7XQMQVmgHS99oCEdArnGU6o2n9HV9lChoBkdAbxJ3os7MgWgHS7toCEdArnHFev6j33V9lChoBkdAcpl+aScLB2gHS7loCEdArnHDNW2gF3V9lChoBkdAczTxlQMx5GgHS8FoCEdArnHLZpSJj3V9lChoBkdAcrEjB2wFDGgHS/JoCEdArnH2TeO4onV9lChoBkdAbjCD2alUImgHS7toCEdArnIAGfPHDXV9lChoBkdAb2K1LJ0W/WgHS7BoCEdArnIZQ+EAYHV9lChoBkdAcfQrcCYCyWgHS5JoCEdArnIc7GNrCXV9lChoBkdAccbRl6JIlWgHS8toCEdArnI1n5BToHV9lChoBkdAcsDD3dsSCmgHS+NoCEdArnI+I42jwnV9lChoBkdAcrO2r4nF52gHS9JoCEdArnJO3pfQbHV9lChoBkdAcqPFNL127mgHS8JoCEdArnJW/5+H8HV9lChoBkdAcqGkY4yXU2gHS7toCEdArnJg9zOopHV9lChoBkdAcQOstCiRGWgHS7loCEdArnJk3juKGnV9lChoBkdAcDOpw0fozWgHS6BoCEdArnKeHaewtHV9lChoBkdAcnthzvJA+2gHS7NoCEdArnLV5jYqXnV9lChoBkdAcSuKTSsr/mgHS7toCEdArnODQE6kqXV9lChoBkdAc++ZXdTHbWgHS7poCEdArnOyD0163XV9lChoBkdAcfdE5hjOLWgHS7poCEdArnO7xVhkRXV9lChoBkdAcQAXE61b7mgHS6hoCEdArnPbMmnfmHV9lChoBkdAcTMjENvwVmgHS8JoCEdArnQLkdV/+nV9lChoBkdAcSP+1SflIWgHS8hoCEdArnQSXa8HwHV9lChoBkdAcV4vAXVLBmgHS+FoCEdArnQsOG0u2HV9lChoBkdAbtRaRp1zQ2gHS7xoCEdArnQ6T+vQnnV9lChoBkdAb/yQZn+Q2mgHS7NoCEdArnRLt3OfNHV9lChoBkdAcwRYEnssx2gHS8RoCEdArnRGjASFoXV9lChoBkdAcdK89wFTvWgHS9VoCEdArnRUFEAo5XV9lChoBkdAcpLpi7TUiWgHS8NoCEdArnRrpmmLtXV9lChoBkdAcsTIXCTEBWgHS8poCEdArnRp0r9VFXV9lChoBkdAbh5LbHp8nmgHS6toCEdArnR4lF+d9XV9lChoBkdAc4iOzY287WgHS+1oCEdArnTDS/j81nV9lChoBkdAcnKG6wt8NWgHS7NoCEdArnTFqHoHLXV9lChoBkdAcV+uIyj59GgHS89oCEdArnW8zyjHn3V9lChoBkdAbwAH0K7ZnWgHS79oCEdArnW/doFmnXV9lChoBkdAcz0dNWU8m2gHS7doCEdArnXF8zAN5XV9lChoBkdAcg9gRK6FumgHS8poCEdArnXXGn4wiHV9lChoBkdAcngNJvo/zWgHS55oCEdArnXoBV+7UXV9lChoBkdAchFupCKJmGgHS5doCEdArnX/1DjR2XV9lChoBkdAcDeBAOavzWgHS85oCEdArnY6vxH5J3V9lChoBkdAcVemvnr6cmgHS71oCEdArnZD6tT1kHV9lChoBkdAcZqxhlUZN2gHS8xoCEdArnZKrLhaT3V9lChoBkdAc3eiEQGwA2gHS8ZoCEdArnZJoEjgRHV9lChoBkdAc8tl/pdKNGgHS8toCEdArnZvozN2T3V9lChoBkdAcrlFxXGOuWgHS/BoCEdArnaKGxlg+nV9lChoBkdAcjJ+x4Y772gHS9FoCEdArnaoOlO45XV9lChoBkdAcdrFtsN2DGgHS+toCEdArnbVZPl+3HV9lChoBkdAccrf5DZ13mgHS8hoCEdArnbdgOSW7nV9lChoBkdAcIeOyE+PimgHS8xoCEdArnboUpNKy3V9lChoBkdAcMsXuE25x2gHS6NoCEdArneDJwKjSHV9lChoBkdAbUWvwEyLymgHS7ZoCEdArneVA9mpVHV9lChoBkdAcm5AjY7JXGgHS7toCEdArnebefqX4XV9lChoBkdAb1AJdB0IT2gHS7poCEdArnea3Zwn6XV9lChoBkdAcf+kSVW0Z2gHS8VoCEdArnfM9pyp73VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 725,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2b075c620105ae247535008fd63186e4861559544a4a1d2e05436ba64aacc79
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abdf9242b48c59a8ecf54ccb355fc283169a8f9fdd47d4463f5e34841c5c288e
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.4.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (180 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.7418637, "std_reward": 25.648153545268904, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-09-12T10:59:30.976026"}