File size: 1,978 Bytes
48a3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebce5ff
48a3431
ebce5ff
48a3431
 
 
ebce5ff
cf8dfa4
 
 
 
 
 
 
 
 
 
 
48a3431
 
 
 
 
 
 
 
 
ebce5ff
 
 
 
 
48a3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66886fc
 
48a3431
 
 
ebce5ff
48a3431
 
 
ebce5ff
 
 
48a3431
 
 
 
ebce5ff
 
48a3431
cf8dfa4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- multi_news
metrics:
- rouge
model-index:
- name: bart-base-multi-news
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: multi_news
      type: multi_news
      config: default
      split: validation
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 26.77
    - name: Rouge2
      type: rouge
      value: 10.28
    - name: Rougel
      type: rouge
      value: 21.26
    - name: Rougelsum
      type: rouge
      value: 22.02
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-multi-news

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the multi_news dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4116
- Rouge1: 26.77
- Rouge2: 10.28
- Rougel: 21.26
- Rougelsum: 22.02

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.7976        | 1.0   | 1250 | 2.4116          | 26.77  | 10.28  | 21.26  | 22.02     |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3