StofEzz commited on
Commit
43ad44e
1 Parent(s): f5577bc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-xls-r-300m
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - wer
8
+ model-index:
9
+ - name: mascir_fr_wav2vec_version1000
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mascir_fr_wav2vec_version1000
17
+
18
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4441
21
+ - Wer: 0.3622
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 0.0001
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 1000
47
+ - num_epochs: 50
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
53
+ | No log | 2.0 | 250 | 4.6558 | 1.0 |
54
+ | 5.4653 | 4.0 | 500 | 3.1189 | 1.0 |
55
+ | 5.4653 | 6.0 | 750 | 1.3807 | 0.9344 |
56
+ | 1.6415 | 8.0 | 1000 | 0.6832 | 0.5689 |
57
+ | 1.6415 | 10.0 | 1250 | 0.4986 | 0.48 |
58
+ | 0.3065 | 12.0 | 1500 | 0.4968 | 0.4711 |
59
+ | 0.3065 | 14.0 | 1750 | 0.4470 | 0.4533 |
60
+ | 0.1441 | 16.0 | 2000 | 0.4832 | 0.4433 |
61
+ | 0.1441 | 18.0 | 2250 | 0.5433 | 0.45 |
62
+ | 0.0938 | 20.0 | 2500 | 0.4734 | 0.4344 |
63
+ | 0.0938 | 22.0 | 2750 | 0.4745 | 0.4111 |
64
+ | 0.0727 | 24.0 | 3000 | 0.4236 | 0.4044 |
65
+ | 0.0727 | 26.0 | 3250 | 0.4692 | 0.4133 |
66
+ | 0.0556 | 28.0 | 3500 | 0.4411 | 0.3967 |
67
+ | 0.0556 | 30.0 | 3750 | 0.4722 | 0.3822 |
68
+ | 0.0422 | 32.0 | 4000 | 0.4845 | 0.3978 |
69
+ | 0.0422 | 34.0 | 4250 | 0.4818 | 0.4 |
70
+ | 0.0325 | 36.0 | 4500 | 0.4638 | 0.3944 |
71
+ | 0.0325 | 38.0 | 4750 | 0.4737 | 0.38 |
72
+ | 0.0284 | 40.0 | 5000 | 0.4615 | 0.3822 |
73
+ | 0.0284 | 42.0 | 5250 | 0.4491 | 0.3722 |
74
+ | 0.0235 | 44.0 | 5500 | 0.4480 | 0.3744 |
75
+ | 0.0235 | 46.0 | 5750 | 0.4630 | 0.3711 |
76
+ | 0.0172 | 48.0 | 6000 | 0.4421 | 0.3644 |
77
+ | 0.0172 | 50.0 | 6250 | 0.4441 | 0.3622 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.31.0
83
+ - Pytorch 2.0.1+cu118
84
+ - Datasets 2.14.2
85
+ - Tokenizers 0.13.3