--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: mascir_fr_wav2vec_version1000 results: [] --- # mascir_fr_wav2vec_version1000 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4441 - Wer: 0.3622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 2.0 | 250 | 4.6558 | 1.0 | | 5.4653 | 4.0 | 500 | 3.1189 | 1.0 | | 5.4653 | 6.0 | 750 | 1.3807 | 0.9344 | | 1.6415 | 8.0 | 1000 | 0.6832 | 0.5689 | | 1.6415 | 10.0 | 1250 | 0.4986 | 0.48 | | 0.3065 | 12.0 | 1500 | 0.4968 | 0.4711 | | 0.3065 | 14.0 | 1750 | 0.4470 | 0.4533 | | 0.1441 | 16.0 | 2000 | 0.4832 | 0.4433 | | 0.1441 | 18.0 | 2250 | 0.5433 | 0.45 | | 0.0938 | 20.0 | 2500 | 0.4734 | 0.4344 | | 0.0938 | 22.0 | 2750 | 0.4745 | 0.4111 | | 0.0727 | 24.0 | 3000 | 0.4236 | 0.4044 | | 0.0727 | 26.0 | 3250 | 0.4692 | 0.4133 | | 0.0556 | 28.0 | 3500 | 0.4411 | 0.3967 | | 0.0556 | 30.0 | 3750 | 0.4722 | 0.3822 | | 0.0422 | 32.0 | 4000 | 0.4845 | 0.3978 | | 0.0422 | 34.0 | 4250 | 0.4818 | 0.4 | | 0.0325 | 36.0 | 4500 | 0.4638 | 0.3944 | | 0.0325 | 38.0 | 4750 | 0.4737 | 0.38 | | 0.0284 | 40.0 | 5000 | 0.4615 | 0.3822 | | 0.0284 | 42.0 | 5250 | 0.4491 | 0.3722 | | 0.0235 | 44.0 | 5500 | 0.4480 | 0.3744 | | 0.0235 | 46.0 | 5750 | 0.4630 | 0.3711 | | 0.0172 | 48.0 | 6000 | 0.4421 | 0.3644 | | 0.0172 | 50.0 | 6250 | 0.4441 | 0.3622 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.2 - Tokenizers 0.13.3