--- license: other language: - en --- ## Model Details This is an unofficial implementation of "[AlpaGasus: Training a better Alpaca with Fewer Data.](https://github.com/Lichang-Chen/AlpaGasus)" with [LLaMA2](https://huggingface.co/meta-llama/Llama-2-13b-hf) & QLoRA! Training code is available at our [repo](https://github.com/gauss5930/AlpaGasus2-QLoRA). - **Developed by:** [Yunsang Yoo](https://huggingface.co/ryan0712) and [Hyunwoo Ko](https://huggingface.co/Cartinoe5930) - **Model type:** Auto-regressive model - **Language(s):** English - **Base Model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) - **License**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/)) ### Training dataset "StudentLLM/Alpagasus-2-13b-QLoRA-merged" used [gpt4life](https://github.com/gpt4life/alpagasus)'s gpt-3.5-turbo filtered dataset, 'alpaca_t45.json'. Configuration of the dataset is as follows: ``` { 'instruction': Give the instruction describing the question. 'input': Occasionally present, detailed instructions accompany the question if available. 'output': Give answers to questions. } . . . ``` ### Prompt Template: Alpaca style prompt ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: (without the <>) ### Input: (if input exists) ### Response: ``` ### Fine-tuning Procedure Our model was finetuned using QLoRA on single A100 80GB GPU. Training details are described in [repo](https://github.com/gauss5930/AlpaGasus2-QLoRA). ### Benchmark Metrics "StudentLLM/Alpagasus-2-13b-QLoRA-merged" model performance is uploaded on Huggingface's [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). Model was evaluated on the tasks specified in HF's Open LLM Leaderboard(ARC, HellaSwag, MMLU, TruthfulQA). | Metric | Value | |-----------------------|-------| | Avg. | 59.34 | | MMLU | 55.27 | | ARC | 61.09 | | HellaSwag | 82.46 | | TruthfulQA | 38.53 | ### LLM Evaluation We tried to follow the evaluation metric introduced by the AlpaGasus paper. During the process, we consulted the code by [gpt4life](https://github.com/gpt4life/alpagasus). We used OpenAI's gpt-3.5-turbo as the evaluator model, and Alpaca2-LoRA-13B(it doesn't exist now...) as the comparison model. For more detailed information, please refer to our Github [repo](https://github.com/gauss5930/AlpaGasus2-QLoRA). The evaluation result of AlpaGasus2-QLoRA is as follows: ![results](https://user-images.githubusercontent.com/80087878/262848860-8742bcc4-1bbc-449f-8bcf-660c08fcc10d.png) ### How to use To use "StudentLLM/Alpagasus-2-13b-QLoRA-merged", please follow the following code! The use of the 7B model is the same! ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") config = PeftConfig.from_pretrained("StudentLLM/Alpagasus-2-13B-QLoRA") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf", use_auth_token="yotu_HuggingFace_token").to(device) model = PeftModel.from_pretrained(model, "StudentLLM/Alpagasus-2-13B-QLoRA") tokenizer = AutoTokenizer.from_pretrained("StudentLLM/Alpagasus-2-13B-QLoRA") tokenizer.pad_token = tokenizer.eos_token input_data = "Please tell me 3 ways to relieve stress." # You can enter any questions!! model_inputs = tokenizer(input_data, return_tensors='pt').to(device) model_output = model.generate(**model_inputs, max_length=256) model_output = tokenizer.decode(model_output[0], skip_special_tokens=True) print(model_output) ``` ### Citations ```bibtex @article{chen2023alpagasus, title={AlpaGasus: Training a Better Alpaca with Fewer Data}, author={Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, Hongxia Jin}, journal={arXiv preprint arXiv:2307.08701}, year={2023} } ```