--- license: apache-2.0 language: - en library_name: transformers tags: - Tulu3 - Smollm - SLMs - Small - Huggingface - Allenai - SFT - DPO - GGUF - RLVR - RL base_model: - SultanR/SmolTulu-1.7b-Instruct datasets: - allenai/RLVR-GSM-MATH-IF-Mixed-Constraints pipeline_tag: text-generation --- # SmolLM2 1.7b Aligned and Reinforced Through Tulu 3! ![SmolTulu Banner](smoltulubanner.png) SmolTulu-1.7b-Reinforced is the reinforcement learning with verifiable rewards (RLVR) version of [SmolTulu-1.7b-Instruct](https://huggingface.co/SultanR/SmolTulu-1.7b-Instruct), which leverages [AllenAI's Tulu 3 post-training pipeline](https://arxiv.org/abs/2411.15124) This model scores the highest current score in both IFEval and GSM8k while maintaining the extremely low contamination levels in Tulu 3 and SmolLM2! I've listed the datasets used to do both the RLVR stage, which is the same one mentioned used in the Tulu 3 paper. ## Evaluation I ran these evaluations using [SmolLM2's evaluation code](https://github.com/huggingface/smollm/tree/main/evaluation) for a more fair comparison. | Metric | SmolTulu-1.7b-Instruct | SmolTulu-1.7b-Reinforced | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct | |:----------------------------|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:|:---------------------:| | ARC (Average) | 51.5 | 51.1 | **51.7** | 41.6 | 46.2 | 43.7 | | BBH (3-shot) | 33.8 | 33.4 | 32.2 | 27.6 | **35.3** | 25.7 | | GSM8K (5-shot) | 51.6 | **61.0** | 48.2 | 26.8 | 42.8 | 4.6 | | HellaSwag | 61.1 | 60.4 | **66.1** | 56.1 | 60.9 | 55.5 | | IFEval (Average prompt/inst) | 67.7 | **69.3** | 56.7 | 53.5 | 47.4 | 23.1 | | MMLU-Pro (MCF) | 17.4 | 17.3 | 19.3 | 12.7 | **24.2** | 11.7 | | PIQA | 72.2 | 72.1 | **74.4** | 72.3 | 73.2 | 71.6 | ## Training Details The reinforced model used PPO with verifiable rewards: - Base model: SmolTulu-1.7b-Instruct - Learning rate: 3e-6 - Total training episodes: 10M - PPO KL penalty coefficient (beta): 0.05 - Maximum sequence/prompt length: 2048 tokens - Response length: 2048 tokens - Rollout batch size: 32 - Minibatch size: 32 - Temperature: 1.0 - Penalty reward: -10.0 for incomplete generations - DeepSpeed Stage 3 optimization - Gradient checkpointing enabled - Training data: RLVR-GSM-MATH-IF-Mixed-Constraints - Reward model multiplier: 0.0 (pure verifiable rewards) ## Usage Just like any Huggingface model, just run it using the transformers library: ```python # pip install transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "SultanR/SmolTulu-1.7b-Reinforced" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ## Citation ``` @misc{alrashed2024smoltuluhigherlearningrate, title={SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs}, author={Sultan Alrashed}, year={2024}, eprint={2412.08347}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.08347}, } ``` The training methodology follows the Tulu 3 paper: ``` @article{lambert2024tulu3, title={TÜLU 3: Pushing Frontiers in Open Language Model Post-Training}, author={Lambert, Nathan and Morrison, Jacob and Pyatkin, Valentina and others}, year={2024}, journal={arXiv preprint arXiv:2411.15124} } ```