Update modeling_esm_plusplus.py
Browse files- modeling_esm_plusplus.py +326 -78
modeling_esm_plusplus.py
CHANGED
@@ -1,18 +1,44 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
-
import math
|
7 |
from dataclasses import dataclass
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from functools import partial
|
11 |
from typing import Optional, Tuple
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from transformers.modeling_outputs import ModelOutput
|
13 |
|
14 |
|
15 |
class ESMplusplusConfig(PretrainedConfig):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
model_type = "ESMplusplus"
|
17 |
def __init__(
|
18 |
self,
|
@@ -33,11 +59,9 @@ class ESMplusplusConfig(PretrainedConfig):
|
|
33 |
self.problem_type = problem_type
|
34 |
|
35 |
|
36 |
-
### Rotary
|
37 |
-
|
38 |
-
|
39 |
-
# Flash attention rotary implementation can be installed like so: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary`
|
40 |
-
def rotate_half(x, interleaved=False):
|
41 |
if not interleaved:
|
42 |
x1, x2 = x.chunk(2, dim=-1)
|
43 |
return torch.cat((-x2, x1), dim=-1)
|
@@ -48,11 +72,14 @@ def rotate_half(x, interleaved=False):
|
|
48 |
)
|
49 |
|
50 |
|
51 |
-
def apply_rotary_emb_torch(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
56 |
ro_dim = cos.shape[-1] * 2
|
57 |
assert ro_dim <= x.shape[-1]
|
58 |
seqlen = x.size(1)
|
@@ -70,21 +97,33 @@ def apply_rotary_emb_torch(x, cos, sin, interleaved=False, _inplace=False):
|
|
70 |
|
71 |
|
72 |
class RotaryEmbedding(torch.nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
def __init__(
|
74 |
self,
|
75 |
dim: int,
|
76 |
-
base=10000.0,
|
77 |
-
interleaved=False,
|
78 |
-
scale_base=None,
|
79 |
-
scaling_factor=1.0,
|
80 |
-
pos_idx_in_fp32=True,
|
81 |
-
device=None,
|
82 |
):
|
83 |
super().__init__()
|
84 |
self.dim = dim
|
85 |
self.base = float(base)
|
86 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
87 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
88 |
self.interleaved = interleaved
|
89 |
self.scale_base = scale_base
|
90 |
self.scaling_factor = scaling_factor
|
@@ -98,6 +137,7 @@ class RotaryEmbedding(torch.nn.Module):
|
|
98 |
self.reset_parameters()
|
99 |
|
100 |
def reset_parameters(self):
|
|
|
101 |
inv_freq = self._compute_inv_freq(self.device)
|
102 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
103 |
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
@@ -108,7 +148,8 @@ class RotaryEmbedding(torch.nn.Module):
|
|
108 |
)
|
109 |
self.register_buffer("scale", scale)
|
110 |
|
111 |
-
def _compute_inv_freq(self, device=None):
|
|
|
112 |
return 1 / (
|
113 |
self.base
|
114 |
** (
|
@@ -117,7 +158,8 @@ class RotaryEmbedding(torch.nn.Module):
|
|
117 |
)
|
118 |
)
|
119 |
|
120 |
-
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
|
|
121 |
if (
|
122 |
seqlen > self._seq_len_cached
|
123 |
or self._cos_cached is None
|
@@ -156,9 +198,14 @@ class RotaryEmbedding(torch.nn.Module):
|
|
156 |
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
157 |
|
158 |
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
159 |
-
"""
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
162 |
"""
|
163 |
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
164 |
assert self._cos_cached is not None
|
@@ -184,12 +231,14 @@ class RotaryEmbedding(torch.nn.Module):
|
|
184 |
assert False
|
185 |
|
186 |
|
187 |
-
### Feedforward
|
188 |
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
|
|
189 |
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
190 |
|
191 |
|
192 |
class SwiGLU(nn.Module):
|
|
|
193 |
def __init__(self):
|
194 |
super(SwiGLU, self).__init__()
|
195 |
|
@@ -198,7 +247,8 @@ class SwiGLU(nn.Module):
|
|
198 |
return F.silu(x1) * x2
|
199 |
|
200 |
|
201 |
-
def swiglu_ln_ffn(d_model: int, expansion_ratio: float):
|
|
|
202 |
return nn.Sequential(
|
203 |
nn.LayerNorm(d_model),
|
204 |
nn.Linear(
|
@@ -211,6 +261,12 @@ def swiglu_ln_ffn(d_model: int, expansion_ratio: float):
|
|
211 |
|
212 |
### Attention
|
213 |
class MultiHeadAttention(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
def __init__(self, d_model: int, n_heads: int):
|
215 |
super().__init__()
|
216 |
self.d_model = d_model
|
@@ -225,7 +281,8 @@ class MultiHeadAttention(nn.Module):
|
|
225 |
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
226 |
self.rotary = RotaryEmbedding(d_model // n_heads)
|
227 |
|
228 |
-
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor):
|
|
|
229 |
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
230 |
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
231 |
q, k = self.rotary(q, k)
|
@@ -233,7 +290,15 @@ class MultiHeadAttention(nn.Module):
|
|
233 |
k = k.flatten(-2, -1)
|
234 |
return q, k
|
235 |
|
236 |
-
def forward(self, x, attention_mask=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
qkv_BLD3 = self.layernorm_qkv(x)
|
238 |
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
239 |
query_BLD, key_BLD = (
|
@@ -249,10 +314,17 @@ class MultiHeadAttention(nn.Module):
|
|
249 |
return self.out_proj(context_BLD)
|
250 |
|
251 |
|
252 |
-
###
|
253 |
def RegressionHead(
|
254 |
-
d_model: int, output_dim: int, hidden_dim: int
|
255 |
) -> nn.Module:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
257 |
return nn.Sequential(
|
258 |
nn.Linear(d_model, hidden_dim),
|
@@ -264,6 +336,14 @@ def RegressionHead(
|
|
264 |
|
265 |
### Transformer Block
|
266 |
class UnifiedTransformerBlock(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
def __init__(
|
268 |
self,
|
269 |
d_model: int,
|
@@ -281,6 +361,14 @@ class UnifiedTransformerBlock(nn.Module):
|
|
281 |
x: torch.Tensor,
|
282 |
attention_mask: Optional[torch.Tensor] = None,
|
283 |
) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
r1 = self.attn(x, attention_mask)
|
285 |
x = x + r1 / self.scaling_factor
|
286 |
r3 = self.ffn(x) / self.scaling_factor
|
@@ -288,23 +376,32 @@ class UnifiedTransformerBlock(nn.Module):
|
|
288 |
return x
|
289 |
|
290 |
|
291 |
-
### Outputs
|
292 |
@dataclass
|
293 |
class TransformerOutput(ModelOutput):
|
294 |
-
|
295 |
-
|
|
|
296 |
|
297 |
|
298 |
@dataclass
|
299 |
class ESMplusplusOutput(ModelOutput):
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
304 |
|
305 |
|
306 |
-
### Transformer
|
307 |
class TransformerStack(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
def __init__(
|
309 |
self,
|
310 |
d_model: int,
|
@@ -330,6 +427,15 @@ class TransformerStack(nn.Module):
|
|
330 |
attention_mask: Optional[torch.Tensor] = None,
|
331 |
output_hidden_states: bool = False,
|
332 |
) -> TransformerOutput:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
batch_size, seq_len, _ = x.shape
|
334 |
hidden_states = ()
|
335 |
if attention_mask is not None:
|
@@ -341,10 +447,24 @@ class TransformerStack(nn.Module):
|
|
341 |
return TransformerOutput(last_hidden_state=self.norm(x), hidden_states=hidden_states)
|
342 |
|
343 |
|
344 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
class ESMplusplusForMaskedLM(PreTrainedModel):
|
346 |
-
"""
|
347 |
-
|
|
|
348 |
"""
|
349 |
config_class = ESMplusplusConfig
|
350 |
def __init__(self, config: ESMplusplusConfig):
|
@@ -358,7 +478,8 @@ class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
358 |
self.tokenizer = EsmSequenceTokenizer()
|
359 |
|
360 |
@classmethod
|
361 |
-
def from_pretrained_esm(cls, model_name: str):
|
|
|
362 |
if '300' in model_name:
|
363 |
return ESMplusplus_300M()
|
364 |
elif '600' in model_name:
|
@@ -367,16 +488,140 @@ class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
367 |
raise ValueError(f"Invalid model name: {model_name}")
|
368 |
|
369 |
@property
|
370 |
-
def device(self):
|
|
|
371 |
return next(self.parameters()).device
|
372 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
def forward(
|
374 |
self,
|
375 |
-
input_ids: torch.Tensor
|
376 |
attention_mask: Optional[torch.Tensor] = None,
|
377 |
labels: Optional[torch.Tensor] = None,
|
378 |
output_hidden_states: bool = False,
|
379 |
) -> ESMplusplusOutput:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
x = self.embed(input_ids)
|
381 |
output = self.transformer(x, attention_mask, output_hidden_states)
|
382 |
x = output.last_hidden_state
|
@@ -393,34 +638,37 @@ class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
393 |
|
394 |
|
395 |
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
396 |
-
"""
|
397 |
-
|
|
|
398 |
"""
|
399 |
def __init__(self, config: ESMplusplusConfig):
|
400 |
super().__init__(config)
|
401 |
self.config = config
|
402 |
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
403 |
-
#
|
404 |
self.mse = nn.MSELoss()
|
405 |
self.ce = nn.CrossEntropyLoss()
|
406 |
self.bce = nn.BCEWithLogitsLoss()
|
407 |
|
408 |
-
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
409 |
-
# x: (batch_size, seq_len, hidden_size)
|
410 |
-
# attention_mask: (batch_size, seq_len)
|
411 |
-
if attention_mask is None:
|
412 |
-
return x.mean(dim=1)
|
413 |
-
else:
|
414 |
-
attention_mask = attention_mask.unsqueeze(-1)
|
415 |
-
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
416 |
-
|
417 |
def forward(
|
418 |
self,
|
419 |
-
input_ids: torch.Tensor
|
420 |
attention_mask: Optional[torch.Tensor] = None,
|
421 |
labels: Optional[torch.Tensor] = None,
|
422 |
output_hidden_states: bool = False,
|
423 |
) -> ESMplusplusOutput:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
|
425 |
x = output.last_hidden_state
|
426 |
cls_features = x[:, 0, :]
|
@@ -457,24 +705,36 @@ class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
|
457 |
|
458 |
|
459 |
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
460 |
-
"""
|
461 |
-
|
|
|
462 |
"""
|
463 |
def __init__(self, config: ESMplusplusConfig):
|
464 |
super().__init__(config)
|
465 |
self.config = config
|
466 |
self.num_labels = config.num_labels
|
467 |
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
468 |
-
#
|
469 |
self.loss_fct = nn.CrossEntropyLoss()
|
470 |
|
471 |
def forward(
|
472 |
self,
|
473 |
-
input_ids: torch.Tensor
|
474 |
attention_mask: Optional[torch.Tensor] = None,
|
475 |
labels: Optional[torch.Tensor] = None,
|
476 |
output_hidden_states: bool = False,
|
477 |
) -> ESMplusplusOutput:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
|
479 |
x = output.last_hidden_state
|
480 |
logits = self.classifier(x)
|
@@ -489,13 +749,7 @@ class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
|
489 |
)
|
490 |
|
491 |
|
492 |
-
### Loading
|
493 |
-
import os
|
494 |
-
from functools import cache
|
495 |
-
from pathlib import Path
|
496 |
-
from huggingface_hub import snapshot_download
|
497 |
-
|
498 |
-
|
499 |
@staticmethod
|
500 |
@cache
|
501 |
def data_root(model: str):
|
@@ -544,12 +798,6 @@ def ESMplusplus_600M(device: torch.device | str = "cpu"):
|
|
544 |
|
545 |
|
546 |
### Tokenization
|
547 |
-
from tokenizers import Tokenizer
|
548 |
-
from tokenizers.models import BPE
|
549 |
-
from tokenizers.processors import TemplateProcessing
|
550 |
-
from transformers import PreTrainedTokenizerFast
|
551 |
-
|
552 |
-
|
553 |
SEQUENCE_VOCAB = [
|
554 |
"<cls>", "<pad>", "<eos>", "<unk>",
|
555 |
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|
|
|
1 |
+
"""
|
2 |
+
ESM++ model implementation.
|
3 |
+
|
4 |
+
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
|
5 |
+
The ESM Python package is not required
|
6 |
+
|
7 |
+
Modified from https://github.com/evolutionaryscale/esm
|
8 |
+
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
|
9 |
+
"""
|
10 |
+
|
11 |
+
import math
|
12 |
+
import os
|
13 |
import torch
|
14 |
import torch.nn as nn
|
15 |
import torch.nn.functional as F
|
|
|
16 |
from dataclasses import dataclass
|
17 |
+
from functools import cache, partial
|
18 |
+
from pathlib import Path
|
|
|
19 |
from typing import Optional, Tuple
|
20 |
+
from einops import rearrange, repeat
|
21 |
+
from huggingface_hub import snapshot_download
|
22 |
+
from tokenizers import Tokenizer
|
23 |
+
from tokenizers.models import BPE
|
24 |
+
from tokenizers.processors import TemplateProcessing
|
25 |
+
from torch.utils.data import Dataset, DataLoader
|
26 |
+
from tqdm.auto import tqdm
|
27 |
+
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
|
28 |
from transformers.modeling_outputs import ModelOutput
|
29 |
|
30 |
|
31 |
class ESMplusplusConfig(PretrainedConfig):
|
32 |
+
"""Configuration class for ESM++ model.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size: Size of the vocabulary
|
36 |
+
hidden_size: Dimension of hidden layers
|
37 |
+
num_attention_heads: Number of attention heads
|
38 |
+
num_hidden_layers: Number of transformer layers
|
39 |
+
num_labels: Number of output labels for classification
|
40 |
+
problem_type: Type of problem - regression, single/multi label classification
|
41 |
+
"""
|
42 |
model_type = "ESMplusplus"
|
43 |
def __init__(
|
44 |
self,
|
|
|
59 |
self.problem_type = problem_type
|
60 |
|
61 |
|
62 |
+
### Rotary Embeddings
|
63 |
+
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
|
64 |
+
"""Rotates half the hidden dims of the input."""
|
|
|
|
|
65 |
if not interleaved:
|
66 |
x1, x2 = x.chunk(2, dim=-1)
|
67 |
return torch.cat((-x2, x1), dim=-1)
|
|
|
72 |
)
|
73 |
|
74 |
|
75 |
+
def apply_rotary_emb_torch(
|
76 |
+
x: torch.Tensor,
|
77 |
+
cos: torch.Tensor,
|
78 |
+
sin: torch.Tensor,
|
79 |
+
interleaved: bool = False,
|
80 |
+
_inplace: bool = False,
|
81 |
+
) -> torch.Tensor:
|
82 |
+
"""Apply rotary embeddings to input based on cos and sin."""
|
83 |
ro_dim = cos.shape[-1] * 2
|
84 |
assert ro_dim <= x.shape[-1]
|
85 |
seqlen = x.size(1)
|
|
|
97 |
|
98 |
|
99 |
class RotaryEmbedding(torch.nn.Module):
|
100 |
+
"""Rotary position embeddings.
|
101 |
+
|
102 |
+
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
|
103 |
+
|
104 |
+
Args:
|
105 |
+
dim: Dimension of the embedding
|
106 |
+
base: Base for computing angular frequencies
|
107 |
+
interleaved: Whether to use interleaved rotations
|
108 |
+
scale_base: Base for scaling
|
109 |
+
scaling_factor: Factor for scaling positions
|
110 |
+
pos_idx_in_fp32: Whether to compute position indices in fp32
|
111 |
+
device: Computation device
|
112 |
+
"""
|
113 |
def __init__(
|
114 |
self,
|
115 |
dim: int,
|
116 |
+
base: float = 10000.0,
|
117 |
+
interleaved: bool = False,
|
118 |
+
scale_base: Optional[float] = None,
|
119 |
+
scaling_factor: float = 1.0,
|
120 |
+
pos_idx_in_fp32: bool = True,
|
121 |
+
device: Optional[torch.device] = None,
|
122 |
):
|
123 |
super().__init__()
|
124 |
self.dim = dim
|
125 |
self.base = float(base)
|
126 |
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
|
|
127 |
self.interleaved = interleaved
|
128 |
self.scale_base = scale_base
|
129 |
self.scaling_factor = scaling_factor
|
|
|
137 |
self.reset_parameters()
|
138 |
|
139 |
def reset_parameters(self):
|
140 |
+
"""Reset the parameters of the embedding."""
|
141 |
inv_freq = self._compute_inv_freq(self.device)
|
142 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
143 |
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
|
|
148 |
)
|
149 |
self.register_buffer("scale", scale)
|
150 |
|
151 |
+
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
|
152 |
+
"""Compute inverse frequency bands."""
|
153 |
return 1 / (
|
154 |
self.base
|
155 |
** (
|
|
|
158 |
)
|
159 |
)
|
160 |
|
161 |
+
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
162 |
+
"""Update the cached cosine and sine values."""
|
163 |
if (
|
164 |
seqlen > self._seq_len_cached
|
165 |
or self._cos_cached is None
|
|
|
198 |
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
199 |
|
200 |
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
201 |
+
"""Apply rotary embeddings to queries and keys.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
q: Query tensor of shape (batch, seqlen, nheads, headdim)
|
205 |
+
k: Key tensor of shape (batch, seqlen, nheads, headdim)
|
206 |
+
|
207 |
+
Returns:
|
208 |
+
Tuple of rotated query and key tensors
|
209 |
"""
|
210 |
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
211 |
assert self._cos_cached is not None
|
|
|
231 |
assert False
|
232 |
|
233 |
|
234 |
+
### Feedforward Network Components
|
235 |
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
236 |
+
"""Compute corrected dimension for SwiGLU."""
|
237 |
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
238 |
|
239 |
|
240 |
class SwiGLU(nn.Module):
|
241 |
+
"""SwiGLU activation function."""
|
242 |
def __init__(self):
|
243 |
super(SwiGLU, self).__init__()
|
244 |
|
|
|
247 |
return F.silu(x1) * x2
|
248 |
|
249 |
|
250 |
+
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
|
251 |
+
"""Create SwiGLU feedforward network with layer normalization."""
|
252 |
return nn.Sequential(
|
253 |
nn.LayerNorm(d_model),
|
254 |
nn.Linear(
|
|
|
261 |
|
262 |
### Attention
|
263 |
class MultiHeadAttention(nn.Module):
|
264 |
+
"""Multi-head attention with rotary embeddings.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
d_model: Model dimension
|
268 |
+
n_heads: Number of attention heads
|
269 |
+
"""
|
270 |
def __init__(self, d_model: int, n_heads: int):
|
271 |
super().__init__()
|
272 |
self.d_model = d_model
|
|
|
281 |
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
282 |
self.rotary = RotaryEmbedding(d_model // n_heads)
|
283 |
|
284 |
+
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
285 |
+
"""Apply rotary embeddings to query and key."""
|
286 |
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
287 |
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
288 |
q, k = self.rotary(q, k)
|
|
|
290 |
k = k.flatten(-2, -1)
|
291 |
return q, k
|
292 |
|
293 |
+
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
294 |
+
"""
|
295 |
+
Args:
|
296 |
+
x: Input tensor
|
297 |
+
attention_mask: Optional attention mask
|
298 |
+
|
299 |
+
Returns:
|
300 |
+
Output tensor after self attention
|
301 |
+
"""
|
302 |
qkv_BLD3 = self.layernorm_qkv(x)
|
303 |
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
304 |
query_BLD, key_BLD = (
|
|
|
314 |
return self.out_proj(context_BLD)
|
315 |
|
316 |
|
317 |
+
### Regression Head
|
318 |
def RegressionHead(
|
319 |
+
d_model: int, output_dim: int, hidden_dim: Optional[int] = None
|
320 |
) -> nn.Module:
|
321 |
+
"""Create a regression head with optional hidden dimension.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
d_model: Input dimension
|
325 |
+
output_dim: Output dimension
|
326 |
+
hidden_dim: Optional hidden dimension (defaults to d_model)
|
327 |
+
"""
|
328 |
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
329 |
return nn.Sequential(
|
330 |
nn.Linear(d_model, hidden_dim),
|
|
|
336 |
|
337 |
### Transformer Block
|
338 |
class UnifiedTransformerBlock(nn.Module):
|
339 |
+
"""Transformer block with attention and feedforward layers.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
d_model: Model dimension
|
343 |
+
n_heads: Number of attention heads
|
344 |
+
residue_scaling_factor: Factor for scaling residual connections
|
345 |
+
expansion_ratio: Expansion ratio for feedforward network
|
346 |
+
"""
|
347 |
def __init__(
|
348 |
self,
|
349 |
d_model: int,
|
|
|
361 |
x: torch.Tensor,
|
362 |
attention_mask: Optional[torch.Tensor] = None,
|
363 |
) -> torch.Tensor:
|
364 |
+
"""
|
365 |
+
Args:
|
366 |
+
x: Input tensor
|
367 |
+
attention_mask: Optional attention mask
|
368 |
+
|
369 |
+
Returns:
|
370 |
+
Output tensor after transformer block
|
371 |
+
"""
|
372 |
r1 = self.attn(x, attention_mask)
|
373 |
x = x + r1 / self.scaling_factor
|
374 |
r3 = self.ffn(x) / self.scaling_factor
|
|
|
376 |
return x
|
377 |
|
378 |
|
379 |
+
### Model Outputs
|
380 |
@dataclass
|
381 |
class TransformerOutput(ModelOutput):
|
382 |
+
"""Output type for transformer encoder."""
|
383 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
384 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
385 |
|
386 |
|
387 |
@dataclass
|
388 |
class ESMplusplusOutput(ModelOutput):
|
389 |
+
"""Output type for ESM++ models."""
|
390 |
+
loss: Optional[torch.Tensor] = None
|
391 |
+
logits: Optional[torch.Tensor] = None
|
392 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
393 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
394 |
|
395 |
|
396 |
+
### Transformer Stack
|
397 |
class TransformerStack(nn.Module):
|
398 |
+
"""Stack of transformer blocks.
|
399 |
+
|
400 |
+
Args:
|
401 |
+
d_model: Model dimension
|
402 |
+
n_heads: Number of attention heads
|
403 |
+
n_layers: Number of transformer layers
|
404 |
+
"""
|
405 |
def __init__(
|
406 |
self,
|
407 |
d_model: int,
|
|
|
427 |
attention_mask: Optional[torch.Tensor] = None,
|
428 |
output_hidden_states: bool = False,
|
429 |
) -> TransformerOutput:
|
430 |
+
"""
|
431 |
+
Args:
|
432 |
+
x: Input tensor
|
433 |
+
attention_mask: Optional attention mask
|
434 |
+
output_hidden_states: Whether to return all hidden states
|
435 |
+
|
436 |
+
Returns:
|
437 |
+
TransformerOutput containing last hidden state and optionally all hidden states
|
438 |
+
"""
|
439 |
batch_size, seq_len, _ = x.shape
|
440 |
hidden_states = ()
|
441 |
if attention_mask is not None:
|
|
|
447 |
return TransformerOutput(last_hidden_state=self.norm(x), hidden_states=hidden_states)
|
448 |
|
449 |
|
450 |
+
### Dataset for Embedding
|
451 |
+
class ProteinDataset(Dataset):
|
452 |
+
"""Simple dataset for protein sequences."""
|
453 |
+
def __init__(self, sequences: list[str]):
|
454 |
+
self.sequences = sequences
|
455 |
+
|
456 |
+
def __len__(self) -> int:
|
457 |
+
return len(self.sequences)
|
458 |
+
|
459 |
+
def __getitem__(self, idx: int) -> str:
|
460 |
+
return self.sequences[idx]
|
461 |
+
|
462 |
+
|
463 |
+
### ESM++ Models
|
464 |
class ESMplusplusForMaskedLM(PreTrainedModel):
|
465 |
+
"""ESM++ model for masked language modeling.
|
466 |
+
|
467 |
+
Implements the base ESM++ architecture with a masked language modeling head.
|
468 |
"""
|
469 |
config_class = ESMplusplusConfig
|
470 |
def __init__(self, config: ESMplusplusConfig):
|
|
|
478 |
self.tokenizer = EsmSequenceTokenizer()
|
479 |
|
480 |
@classmethod
|
481 |
+
def from_pretrained_esm(cls, model_name: str) -> "ESMplusplusForMaskedLM":
|
482 |
+
"""Load a pretrained ESM++ model."""
|
483 |
if '300' in model_name:
|
484 |
return ESMplusplus_300M()
|
485 |
elif '600' in model_name:
|
|
|
488 |
raise ValueError(f"Invalid model name: {model_name}")
|
489 |
|
490 |
@property
|
491 |
+
def device(self) -> torch.device:
|
492 |
+
"""Get the device of the model."""
|
493 |
return next(self.parameters()).device
|
494 |
|
495 |
+
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
496 |
+
"""Apply mean pooling to sequence outputs."""
|
497 |
+
if attention_mask is None:
|
498 |
+
return x.mean(dim=1)
|
499 |
+
else:
|
500 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
501 |
+
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
502 |
+
|
503 |
+
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
504 |
+
"""Collate function for batching sequences."""
|
505 |
+
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
|
506 |
+
|
507 |
+
def _read_sequences_from_db(self, db_path: str) -> set[str]:
|
508 |
+
"""Read sequences from SQLite database."""
|
509 |
+
import sqlite3
|
510 |
+
sequences = []
|
511 |
+
with sqlite3.connect(db_path) as conn:
|
512 |
+
c = conn.cursor()
|
513 |
+
c.execute("SELECT sequence FROM embeddings")
|
514 |
+
while True:
|
515 |
+
row = c.fetchone()
|
516 |
+
if row is None:
|
517 |
+
break
|
518 |
+
sequences.append(row[0])
|
519 |
+
return set(sequences)
|
520 |
+
|
521 |
+
def embed_dataset(
|
522 |
+
self,
|
523 |
+
sequences: list[str],
|
524 |
+
batch_size: int = 2,
|
525 |
+
max_len: int = 512,
|
526 |
+
full_embeddings: bool = False,
|
527 |
+
full_precision: bool = False,
|
528 |
+
pooling_type: str = 'mean',
|
529 |
+
num_workers: int = 0,
|
530 |
+
sql: bool = False,
|
531 |
+
sql_db_path: str = 'embeddings.db',
|
532 |
+
) -> Optional[dict[str, torch.Tensor]]:
|
533 |
+
"""Embed a dataset of protein sequences.
|
534 |
+
|
535 |
+
Args:
|
536 |
+
sequences: List of protein sequences
|
537 |
+
batch_size: Batch size for processing
|
538 |
+
max_len: Maximum sequence length
|
539 |
+
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
|
540 |
+
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
|
541 |
+
pooling_type: Type of pooling ('mean' or 'cls')
|
542 |
+
num_workers: Number of workers for data loading, 0 for the main process
|
543 |
+
sql: Whether to store embeddings in SQLite database - will be stored in float32
|
544 |
+
sql_db_path: Path to SQLite database
|
545 |
+
|
546 |
+
Returns:
|
547 |
+
Dictionary mapping sequences to embeddings, or None if sql=True
|
548 |
+
"""
|
549 |
+
sequences = list(set([seq[:max_len] for seq in sequences]))
|
550 |
+
sequences = sorted(sequences, key=len, reverse=True)
|
551 |
+
dataset = ProteinDataset(sequences)
|
552 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn)
|
553 |
+
device = self.device
|
554 |
+
|
555 |
+
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
556 |
+
if full_embeddings:
|
557 |
+
return residue_embeddings
|
558 |
+
elif pooling_type == 'mean':
|
559 |
+
return self.mean_pooling(residue_embeddings, attention_mask)
|
560 |
+
else:
|
561 |
+
return residue_embeddings[:, 0, :]
|
562 |
+
|
563 |
+
if sql:
|
564 |
+
import sqlite3
|
565 |
+
conn = sqlite3.connect(sql_db_path)
|
566 |
+
c = conn.cursor()
|
567 |
+
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
|
568 |
+
already_embedded = self._read_sequences_from_db(sql_db_path)
|
569 |
+
to_embed = [seq for seq in sequences if seq not in already_embedded]
|
570 |
+
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
|
571 |
+
print(f"Embedding {len(to_embed)} new sequences")
|
572 |
+
|
573 |
+
with torch.no_grad():
|
574 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
575 |
+
seqs = sequences[i * batch_size:(i + 1) * batch_size]
|
576 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
577 |
+
x = self.embed(input_ids)
|
578 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.float() # required for sql
|
579 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask)
|
580 |
+
|
581 |
+
for seq, emb in zip(seqs, embeddings):
|
582 |
+
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
|
583 |
+
(seq, emb.cpu().numpy().tobytes()))
|
584 |
+
|
585 |
+
if (i + 1) % 100 == 0:
|
586 |
+
conn.commit()
|
587 |
+
|
588 |
+
conn.commit()
|
589 |
+
conn.close()
|
590 |
+
return None
|
591 |
+
|
592 |
+
embeddings_dict = {}
|
593 |
+
with torch.no_grad():
|
594 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
595 |
+
seqs = sequences[i * batch_size:(i + 1) * batch_size]
|
596 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
597 |
+
x = self.embed(input_ids)
|
598 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state
|
599 |
+
if full_precision:
|
600 |
+
residue_embeddings = residue_embeddings.float()
|
601 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask)
|
602 |
+
for seq, emb in zip(seqs, embeddings):
|
603 |
+
embeddings_dict[seq] = emb
|
604 |
+
|
605 |
+
return embeddings_dict
|
606 |
+
|
607 |
def forward(
|
608 |
self,
|
609 |
+
input_ids: Optional[torch.Tensor] = None,
|
610 |
attention_mask: Optional[torch.Tensor] = None,
|
611 |
labels: Optional[torch.Tensor] = None,
|
612 |
output_hidden_states: bool = False,
|
613 |
) -> ESMplusplusOutput:
|
614 |
+
"""Forward pass for masked language modeling.
|
615 |
+
|
616 |
+
Args:
|
617 |
+
input_ids: Input token IDs
|
618 |
+
attention_mask: Attention mask
|
619 |
+
labels: Optional labels for masked tokens
|
620 |
+
output_hidden_states: Whether to return all hidden states
|
621 |
+
|
622 |
+
Returns:
|
623 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
624 |
+
"""
|
625 |
x = self.embed(input_ids)
|
626 |
output = self.transformer(x, attention_mask, output_hidden_states)
|
627 |
x = output.last_hidden_state
|
|
|
638 |
|
639 |
|
640 |
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
641 |
+
"""ESM++ model for sequence classification.
|
642 |
+
|
643 |
+
Extends the base ESM++ model with a classification head.
|
644 |
"""
|
645 |
def __init__(self, config: ESMplusplusConfig):
|
646 |
super().__init__(config)
|
647 |
self.config = config
|
648 |
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
649 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
650 |
self.mse = nn.MSELoss()
|
651 |
self.ce = nn.CrossEntropyLoss()
|
652 |
self.bce = nn.BCEWithLogitsLoss()
|
653 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
654 |
def forward(
|
655 |
self,
|
656 |
+
input_ids: Optional[torch.Tensor] = None,
|
657 |
attention_mask: Optional[torch.Tensor] = None,
|
658 |
labels: Optional[torch.Tensor] = None,
|
659 |
output_hidden_states: bool = False,
|
660 |
) -> ESMplusplusOutput:
|
661 |
+
"""Forward pass for sequence classification.
|
662 |
+
|
663 |
+
Args:
|
664 |
+
input_ids: Input token IDs
|
665 |
+
attention_mask: Attention mask
|
666 |
+
labels: Optional labels for classification
|
667 |
+
output_hidden_states: Whether to return all hidden states
|
668 |
+
|
669 |
+
Returns:
|
670 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
671 |
+
"""
|
672 |
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
|
673 |
x = output.last_hidden_state
|
674 |
cls_features = x[:, 0, :]
|
|
|
705 |
|
706 |
|
707 |
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
708 |
+
"""ESM++ model for token classification.
|
709 |
+
|
710 |
+
Extends the base ESM++ model with a token classification head.
|
711 |
"""
|
712 |
def __init__(self, config: ESMplusplusConfig):
|
713 |
super().__init__(config)
|
714 |
self.config = config
|
715 |
self.num_labels = config.num_labels
|
716 |
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
717 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
718 |
self.loss_fct = nn.CrossEntropyLoss()
|
719 |
|
720 |
def forward(
|
721 |
self,
|
722 |
+
input_ids: Optional[torch.Tensor] = None,
|
723 |
attention_mask: Optional[torch.Tensor] = None,
|
724 |
labels: Optional[torch.Tensor] = None,
|
725 |
output_hidden_states: bool = False,
|
726 |
) -> ESMplusplusOutput:
|
727 |
+
"""Forward pass for token classification.
|
728 |
+
|
729 |
+
Args:
|
730 |
+
input_ids: Input token IDs
|
731 |
+
attention_mask: Attention mask
|
732 |
+
labels: Optional labels for token classification
|
733 |
+
output_hidden_states: Whether to return all hidden states
|
734 |
+
|
735 |
+
Returns:
|
736 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
737 |
+
"""
|
738 |
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
|
739 |
x = output.last_hidden_state
|
740 |
logits = self.classifier(x)
|
|
|
749 |
)
|
750 |
|
751 |
|
752 |
+
### Loading from EvolutionaryScale
|
|
|
|
|
|
|
|
|
|
|
|
|
753 |
@staticmethod
|
754 |
@cache
|
755 |
def data_root(model: str):
|
|
|
798 |
|
799 |
|
800 |
### Tokenization
|
|
|
|
|
|
|
|
|
|
|
|
|
801 |
SEQUENCE_VOCAB = [
|
802 |
"<cls>", "<pad>", "<eos>", "<unk>",
|
803 |
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|