T-Blue commited on
Commit
00058f9
·
verified ·
1 Parent(s): 441d155

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google-bert/bert-base-uncased
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:97043
13
+ - loss:DenoisingAutoEncoderLoss
14
+ widget:
15
+ - source_sentence: ढचणच𑀟च𑀟
16
+ sentences:
17
+ - ढ𑀢ढल𑀢𑁣ब𑀪चध𑀫ण ढचणच𑀟च𑀟 𑀞नलच𑀠च𑀟च𑀤च𑀪पच𑀯
18
+ - ' णच 𑀪𑀢𑀞𑁦 𑀱च𑀟𑀟च𑀟 𑀠न𑀞च𑀠𑀢𑀟 𑀫च𑀪 𑀤न𑀱च 𑀭थ𑁢𑀰𑀯'
19
+ - ' च त𑀢𑀞𑀢𑀟 𑀠च𑀘चल𑀢𑀳च𑀪𑀠च𑀟च𑀤च𑀪पच𑀯'
20
+ - source_sentence: त𑁣𑀠
21
+ sentences:
22
+ - ' 𑀲𑀪𑁦𑁦𑀣𑁣𑀠 𑀫𑁣न𑀳𑁦 पच ढच𑀢𑀱च 𑀳न𑀣च𑀟 𑀠चप𑀳चण𑀢 𑀠च𑀲𑀢 झच𑀳झच𑀟त𑀢 च प𑀳च𑀞च𑀟𑀢𑀟 ब𑀱च𑀠𑀟चप𑁣त𑀢𑀟 𑀣च𑀟𑀟𑀢णच
23
+ च 𑀳𑀫𑁦𑀞च𑀪च पच ठ𑀧𑀭ठ𑀯'
24
+ - 𑀖𑀖फ𑀮𑀦 𑁣𑀪𑁣𑀠𑁣 𑀝ठ𑀗𑀯
25
+ - त𑁣𑀠 𑀯
26
+ - source_sentence: 𑀣च𑀟णच𑀟 𑀝𑀭थथ𑀬षठ𑀧𑀧ठ𑀮
27
+ sentences:
28
+ - ' 𑀣च𑀟णच𑀟 𑀝𑀭थथ𑀬षठ𑀧𑀧ठ𑀮 ध𑀪𑁣𑀲𑀯'
29
+ - 𑀳त𑀯
30
+ - ' 𑀳𑀫𑀢 ञच 𑀟𑁦 बच लच𑀲पच𑀟च𑀪 त𑁣ल𑀯'
31
+ - source_sentence: 𑀠च𑀟च𑀤च𑀪पच𑀯
32
+ sentences:
33
+ - ' धच𑀪𑀞𑁦𑀪𑀦 लचनणच𑀟 ढ𑁣𑀳प𑁣𑀟𑀯'
34
+ - ब𑀪𑁦चपषधण𑀪च𑀠𑀢𑀣𑀯
35
+ - 𑀠च𑀟च𑀤च𑀪पच𑀯
36
+ - source_sentence: 𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च
37
+ sentences:
38
+ - ' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯'
39
+ - 𑀯
40
+ - 𑀯
41
+ ---
42
+
43
+ # SentenceTransformer based on google-bert/bert-base-uncased
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 768 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("T-Blue/tsdae_pro_mbert")
90
+ # Run inference
91
+ sentences = [
92
+ '𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च',
93
+ ' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯',
94
+ '𑀯',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 768]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### Unnamed Dataset
147
+
148
+
149
+ * Size: 97,043 training samples
150
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | sentence_0 | sentence_1 |
153
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
154
+ | type | string | string |
155
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.12 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.06 tokens</li><li>max: 56 tokens</li></ul> |
156
+ * Samples:
157
+ | sentence_0 | sentence_1 |
158
+ |:-------------------|:------------------------|
159
+ | <code>च𑀞𑀱च𑀢</code> | <code> च𑀞𑀱च𑀢 𑀭ठ𑀯</code> |
160
+ | <code>ठ𑀧𑀧𑁢𑀯</code> | <code> ठ𑀧𑀧𑁢𑀯</code> |
161
+ | <code>𑁢𑀗𑀯</code> | <code>𑁢𑀗𑀯</code> |
162
+ * Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
163
+
164
+ ### Training Hyperparameters
165
+ #### Non-Default Hyperparameters
166
+
167
+ - `per_device_train_batch_size`: 16
168
+ - `per_device_eval_batch_size`: 16
169
+ - `num_train_epochs`: 5
170
+ - `multi_dataset_batch_sampler`: round_robin
171
+
172
+ #### All Hyperparameters
173
+ <details><summary>Click to expand</summary>
174
+
175
+ - `overwrite_output_dir`: False
176
+ - `do_predict`: False
177
+ - `eval_strategy`: no
178
+ - `prediction_loss_only`: True
179
+ - `per_device_train_batch_size`: 16
180
+ - `per_device_eval_batch_size`: 16
181
+ - `per_gpu_train_batch_size`: None
182
+ - `per_gpu_eval_batch_size`: None
183
+ - `gradient_accumulation_steps`: 1
184
+ - `eval_accumulation_steps`: None
185
+ - `learning_rate`: 5e-05
186
+ - `weight_decay`: 0.0
187
+ - `adam_beta1`: 0.9
188
+ - `adam_beta2`: 0.999
189
+ - `adam_epsilon`: 1e-08
190
+ - `max_grad_norm`: 1
191
+ - `num_train_epochs`: 5
192
+ - `max_steps`: -1
193
+ - `lr_scheduler_type`: linear
194
+ - `lr_scheduler_kwargs`: {}
195
+ - `warmup_ratio`: 0.0
196
+ - `warmup_steps`: 0
197
+ - `log_level`: passive
198
+ - `log_level_replica`: warning
199
+ - `log_on_each_node`: True
200
+ - `logging_nan_inf_filter`: True
201
+ - `save_safetensors`: True
202
+ - `save_on_each_node`: False
203
+ - `save_only_model`: False
204
+ - `restore_callback_states_from_checkpoint`: False
205
+ - `no_cuda`: False
206
+ - `use_cpu`: False
207
+ - `use_mps_device`: False
208
+ - `seed`: 42
209
+ - `data_seed`: None
210
+ - `jit_mode_eval`: False
211
+ - `use_ipex`: False
212
+ - `bf16`: False
213
+ - `fp16`: False
214
+ - `fp16_opt_level`: O1
215
+ - `half_precision_backend`: auto
216
+ - `bf16_full_eval`: False
217
+ - `fp16_full_eval`: False
218
+ - `tf32`: None
219
+ - `local_rank`: 0
220
+ - `ddp_backend`: None
221
+ - `tpu_num_cores`: None
222
+ - `tpu_metrics_debug`: False
223
+ - `debug`: []
224
+ - `dataloader_drop_last`: False
225
+ - `dataloader_num_workers`: 0
226
+ - `dataloader_prefetch_factor`: None
227
+ - `past_index`: -1
228
+ - `disable_tqdm`: False
229
+ - `remove_unused_columns`: True
230
+ - `label_names`: None
231
+ - `load_best_model_at_end`: False
232
+ - `ignore_data_skip`: False
233
+ - `fsdp`: []
234
+ - `fsdp_min_num_params`: 0
235
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
236
+ - `fsdp_transformer_layer_cls_to_wrap`: None
237
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
238
+ - `deepspeed`: None
239
+ - `label_smoothing_factor`: 0.0
240
+ - `optim`: adamw_torch
241
+ - `optim_args`: None
242
+ - `adafactor`: False
243
+ - `group_by_length`: False
244
+ - `length_column_name`: length
245
+ - `ddp_find_unused_parameters`: None
246
+ - `ddp_bucket_cap_mb`: None
247
+ - `ddp_broadcast_buffers`: False
248
+ - `dataloader_pin_memory`: True
249
+ - `dataloader_persistent_workers`: False
250
+ - `skip_memory_metrics`: True
251
+ - `use_legacy_prediction_loop`: False
252
+ - `push_to_hub`: False
253
+ - `resume_from_checkpoint`: None
254
+ - `hub_model_id`: None
255
+ - `hub_strategy`: every_save
256
+ - `hub_private_repo`: False
257
+ - `hub_always_push`: False
258
+ - `gradient_checkpointing`: False
259
+ - `gradient_checkpointing_kwargs`: None
260
+ - `include_inputs_for_metrics`: False
261
+ - `eval_do_concat_batches`: True
262
+ - `fp16_backend`: auto
263
+ - `push_to_hub_model_id`: None
264
+ - `push_to_hub_organization`: None
265
+ - `mp_parameters`:
266
+ - `auto_find_batch_size`: False
267
+ - `full_determinism`: False
268
+ - `torchdynamo`: None
269
+ - `ray_scope`: last
270
+ - `ddp_timeout`: 1800
271
+ - `torch_compile`: False
272
+ - `torch_compile_backend`: None
273
+ - `torch_compile_mode`: None
274
+ - `dispatch_batches`: None
275
+ - `split_batches`: None
276
+ - `include_tokens_per_second`: False
277
+ - `include_num_input_tokens_seen`: False
278
+ - `neftune_noise_alpha`: None
279
+ - `optim_target_modules`: None
280
+ - `batch_eval_metrics`: False
281
+ - `eval_on_start`: False
282
+ - `batch_sampler`: batch_sampler
283
+ - `multi_dataset_batch_sampler`: round_robin
284
+
285
+ </details>
286
+
287
+ ### Training Logs
288
+ | Epoch | Step | Training Loss |
289
+ |:------:|:-----:|:-------------:|
290
+ | 0.0824 | 500 | 1.1372 |
291
+ | 0.1649 | 1000 | 0.8075 |
292
+ | 0.2473 | 1500 | 0.7708 |
293
+ | 0.3297 | 2000 | 0.7464 |
294
+ | 0.4121 | 2500 | 0.7286 |
295
+ | 0.4946 | 3000 | 0.7187 |
296
+ | 0.5770 | 3500 | 0.7089 |
297
+ | 0.6594 | 4000 | 0.6942 |
298
+ | 0.7418 | 4500 | 0.7022 |
299
+ | 0.8243 | 5000 | 0.6939 |
300
+ | 0.9067 | 5500 | 0.6859 |
301
+ | 0.9891 | 6000 | 0.6807 |
302
+ | 1.0715 | 6500 | 0.6841 |
303
+ | 1.1540 | 7000 | 0.6764 |
304
+ | 1.2364 | 7500 | 0.6705 |
305
+ | 1.3188 | 8000 | 0.6712 |
306
+ | 1.4013 | 8500 | 0.6683 |
307
+ | 1.4837 | 9000 | 0.6662 |
308
+ | 1.5661 | 9500 | 0.6635 |
309
+ | 1.6485 | 10000 | 0.655 |
310
+ | 1.7310 | 10500 | 0.6667 |
311
+ | 1.8134 | 11000 | 0.6533 |
312
+ | 1.8958 | 11500 | 0.6564 |
313
+ | 1.9782 | 12000 | 0.646 |
314
+ | 2.0607 | 12500 | 0.6522 |
315
+ | 2.1431 | 13000 | 0.6466 |
316
+ | 2.2255 | 13500 | 0.6464 |
317
+ | 2.3079 | 14000 | 0.647 |
318
+ | 2.3904 | 14500 | 0.6408 |
319
+ | 2.4728 | 15000 | 0.6415 |
320
+ | 2.5552 | 15500 | 0.6397 |
321
+ | 2.6377 | 16000 | 0.6303 |
322
+ | 2.7201 | 16500 | 0.6465 |
323
+ | 2.8025 | 17000 | 0.6287 |
324
+ | 2.8849 | 17500 | 0.6358 |
325
+ | 2.9674 | 18000 | 0.6247 |
326
+ | 3.0498 | 18500 | 0.6318 |
327
+ | 3.1322 | 19000 | 0.627 |
328
+ | 3.2146 | 19500 | 0.6222 |
329
+ | 3.2971 | 20000 | 0.6262 |
330
+ | 3.3795 | 20500 | 0.6197 |
331
+ | 3.4619 | 21000 | 0.6234 |
332
+ | 3.5443 | 21500 | 0.6193 |
333
+ | 3.6268 | 22000 | 0.6088 |
334
+ | 3.7092 | 22500 | 0.624 |
335
+ | 3.7916 | 23000 | 0.6089 |
336
+ | 3.8741 | 23500 | 0.6184 |
337
+ | 3.9565 | 24000 | 0.6047 |
338
+ | 4.0389 | 24500 | 0.6066 |
339
+ | 4.1213 | 25000 | 0.6082 |
340
+ | 4.2038 | 25500 | 0.5999 |
341
+ | 4.2862 | 26000 | 0.6046 |
342
+ | 4.3686 | 26500 | 0.6038 |
343
+ | 4.4510 | 27000 | 0.5978 |
344
+ | 4.5335 | 27500 | 0.5948 |
345
+ | 4.6159 | 28000 | 0.5887 |
346
+ | 4.6983 | 28500 | 0.6031 |
347
+ | 4.7807 | 29000 | 0.5823 |
348
+ | 4.8632 | 29500 | 0.5953 |
349
+ | 4.9456 | 30000 | 0.5793 |
350
+
351
+
352
+ ### Framework Versions
353
+ - Python: 3.10.12
354
+ - Sentence Transformers: 3.0.1
355
+ - Transformers: 4.42.4
356
+ - PyTorch: 2.3.1+cu121
357
+ - Accelerate: 0.33.0
358
+ - Datasets: 2.18.0
359
+ - Tokenizers: 0.19.1
360
+
361
+ ## Citation
362
+
363
+ ### BibTeX
364
+
365
+ #### Sentence Transformers
366
+ ```bibtex
367
+ @inproceedings{reimers-2019-sentence-bert,
368
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
369
+ author = "Reimers, Nils and Gurevych, Iryna",
370
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
371
+ month = "11",
372
+ year = "2019",
373
+ publisher = "Association for Computational Linguistics",
374
+ url = "https://arxiv.org/abs/1908.10084",
375
+ }
376
+ ```
377
+
378
+ #### DenoisingAutoEncoderLoss
379
+ ```bibtex
380
+ @inproceedings{wang-2021-TSDAE,
381
+ title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
382
+ author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
383
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
384
+ month = nov,
385
+ year = "2021",
386
+ address = "Punta Cana, Dominican Republic",
387
+ publisher = "Association for Computational Linguistics",
388
+ pages = "671--688",
389
+ url = "https://arxiv.org/abs/2104.06979",
390
+ }
391
+ ```
392
+
393
+ <!--
394
+ ## Glossary
395
+
396
+ *Clearly define terms in order to be accessible across audiences.*
397
+ -->
398
+
399
+ <!--
400
+ ## Model Card Authors
401
+
402
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
403
+ -->
404
+
405
+ <!--
406
+ ## Model Card Contact
407
+
408
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
409
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.42.4",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2e713ebc4685c65245bff114ccb5fbf800ed9ab512a0d5f6ea051578aa186f7
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff