File size: 10,808 Bytes
d07c040
 
 
 
 
 
 
 
 
45d0794
 
6305670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d07c040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4fdd6
d07c040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4fdd6
d07c040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c4fdd6
 
 
 
d07c040
 
 
 
 
 
 
6c4fdd6
 
 
d07c040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427ea92
 
 
6305670
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
---
library_name: transformers
tags:
- mergekit
- merge
- llama-3.1
- roleplay
- function calling
base_model:
- T145/ZEUS-8B-V2
license: llama3.1
model-index:
- name: ZEUS-8B-V2-abliterated
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: wis-k/instruction-following-eval
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 74.57
      name: averaged accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: SaylorTwift/bbh
      split: test
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 30.34
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: lighteval/MATH-Hard
      split: test
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 20.39
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      split: train
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.05
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.59
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.94
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
      name: Open LLM Leaderboard
---

# ZEUS 8B 🌩️ V2 - ABLITERATED

V2 abliterated using the following script:

```python
import gc
import random

import torch
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

MODEL_ID = "T145/ZEUS-8B-V2"

# More samples can help find the direction better.
NUM_PROMPT_SAMPLES = 32

# Used to skip the first and last layers for the modifications.
SKIP_BEGIN_LAYERS = 1
SKIP_END_LAYERS = 1

# The layer we will use for the refusal_dir calculation will be floor(LAYER_FRACTION_TO_USE * model.layers).
LAYER_FRACTION_TO_USE = 0.6

# Use a negative scale_factor to "induce" and a positive scale_factor of < 1 to "ablate" less.
SCALE_FACTOR = 1.0

torch.inference_mode()
torch.set_default_device("cpu")
torch.set_grad_enabled(False)

# Load the model on the GPU in quantized type if we can.
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16,
    quantization_config=BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16),
    low_cpu_mem_usage=True,
    device_map='auto'
)
model.requires_grad_(False)

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
layer_idx = int(len(model.model.layers) * LAYER_FRACTION_TO_USE)

print("Layer index for refusal direction: " + str(layer_idx))

with open("harmful.txt", "r", encoding="utf-8") as f:
    harmful = f.readlines()

with open("harmless.txt", "r", encoding="utf-8") as f:
    harmless = f.readlines()

harmful_instructions = random.sample(harmful, min(NUM_PROMPT_SAMPLES, len(harmful)))
harmless_instructions = random.sample(harmless, min(NUM_PROMPT_SAMPLES, len(harmless)))

harmful_toks = [
    tokenizer.apply_chat_template(conversation=[{"role": "user", "content": insn}], add_generation_prompt=True, tokenize=False,
                                  return_tensors="pt") for insn in harmful_instructions]
harmless_toks = [
    tokenizer.apply_chat_template(conversation=[{"role": "user", "content": insn}], add_generation_prompt=True, tokenize=False,
                                  return_tensors="pt") for insn in harmless_instructions]

bar_generate = tqdm(total = len(harmful_instructions) + len(harmless_instructions), desc = "Generating samples")

# Only return the final hidden state of the layer we care about, and use 'cpu' to save VRAM.
def generate(toks):
    inputs = tokenizer(toks, return_tensors="pt", padding=True)
    inputs = inputs.to(model.device)
    output = model.generate(
        inputs['input_ids'],
        use_cache=False,
        max_new_tokens=1,
        return_dict_in_generate=True,
        output_hidden_states=True,
        attention_mask=inputs["attention_mask"],
        pad_token_id=tokenizer.eos_token_id
    )
    bar_generate.update(n=1)
    return output.hidden_states[0][layer_idx][:, -1, :].to('cpu') # Final hidden state = -1.

harmful_hidden = [generate(toks) for toks in harmful_toks]
harmless_hidden = [generate(toks) for toks in harmless_toks]

bar_generate.close()

harmful_mean = torch.stack(harmful_hidden).mean(dim=0)
harmless_mean = torch.stack(harmless_hidden).mean(dim=0)

refusal_dir = harmful_mean - harmless_mean
refusal_dir = refusal_dir.squeeze() / refusal_dir.norm()

torch.save(refusal_dir, MODEL_ID.replace("/", "_") + "_refusal_dir.pt")

# Free memory
del model
gc.collect()
torch.cuda.empty_cache()

# Reload the model in CPU memory with bfloat16 data type
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    device_map='cpu'
)
model.requires_grad_(False)

# Make sure it's on the 'cpu' device.
if refusal_dir.device != model.device:
    refusal_dir = refusal_dir.to(model.device)

# Get the language model component and check it's as expected.
lm_model = model.model
assert hasattr(lm_model, 'layers'), "The model does not have the expected structure."

# Check the ranges are valid.
num_layers = len(lm_model.layers)
assert SKIP_BEGIN_LAYERS >= 0, "SKIP_BEGIN_LAYERS must be >= 0."
assert SKIP_END_LAYERS >= 0, "SKIP_END_LAYERS must be >= 0."
assert SKIP_BEGIN_LAYERS + SKIP_END_LAYERS < num_layers, "SKIP_BEGIN_LAYERS + SKIP_END_LAYERS must be < num_layers."

bar_layers = tqdm(total= (num_layers - (SKIP_BEGIN_LAYERS + SKIP_END_LAYERS)) * 2, desc = "Modifying tensors")

# NOTE: Use a negative scale_factor to "induce" and a positive scale_factor of < 1 to "ablate" less.
def modify_tensor(tensor_data, refusal_dir, scale_factor: float = 1.0):
    assert scale_factor <= 1.0, "Using a scale_factor of > 1 doesn't make sense..."
    tensor_float = tensor_data.to(torch.bfloat16)
    refusal_dir_float = refusal_dir.to(torch.bfloat16)
    tensor_float -= scale_factor * torch.matmul(torch.outer(refusal_dir_float, refusal_dir_float), tensor_float)
    tensor_modified = tensor_float.to(torch.bfloat16)
    bar_layers.update(1)
    return torch.nn.Parameter(tensor_modified)

# Modify the 'self_attn.o_proj.weight' and 'mlp.down_proj.weight' in each chosen layer.
# NOTE: These tensors names are speific to "llama" and may need changing.
#       - See here for others: https://github.com/arcee-ai/mergekit/tree/main/mergekit/_data/architectures
for layer_idx in range(SKIP_BEGIN_LAYERS, num_layers - SKIP_END_LAYERS):
    lm_model.layers[layer_idx].self_attn.o_proj.weight = modify_tensor(
        lm_model.layers[layer_idx].self_attn.o_proj.weight.data, refusal_dir, SCALE_FACTOR
    )
    lm_model.layers[layer_idx].mlp.down_proj.weight = modify_tensor(
        lm_model.layers[layer_idx].mlp.down_proj.weight.data, refusal_dir, SCALE_FACTOR
    )

bar_layers.close()

print("Saving modified model (with original tokenizer)...")

FIXED_ID = f"{MODEL_ID}-abliterated"
model.save_pretrained(FIXED_ID)
tokenizer.save_pretrained(FIXED_ID)
```

## Merge Details
### Merge Method

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) as a base.

### Models Merged

The following models were included in the merge:
* [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite)
* [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
* [Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
  int8_mask: 1.0
slices:
- sources:
  - layer_range: [0, 32]
    model: akjindal53244/Llama-3.1-Storm-8B
    parameters:
      density: 0.8
      weight: 0.25
  - layer_range: [0, 32]
    model: arcee-ai/Llama-3.1-SuperNova-Lite
    parameters:
      density: 0.8
      weight: 0.33
  - layer_range: [0, 32]
    model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
    parameters:
      density: 0.8
      weight: 0.42
  - layer_range: [0, 32]
    model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: base
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/T145__ZEUS-8B-V2-abliterated-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=T145%2FZEUS-8B-V2-abliterated&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!

|      Metric       |Value (%)|
|-------------------|--------:|
|**Average**        |    28.98|
|IFEval (0-Shot)    |    74.57|
|BBH (3-Shot)       |    30.34|
|MATH Lvl 5 (4-Shot)|    20.39|
|GPQA (0-shot)      |     7.05|
|MuSR (0-shot)      |     9.59|
|MMLU-PRO (5-shot)  |    31.94|