File size: 10,808 Bytes
d07c040 45d0794 6305670 d07c040 6c4fdd6 d07c040 6c4fdd6 d07c040 6c4fdd6 d07c040 6c4fdd6 d07c040 427ea92 6305670 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
---
library_name: transformers
tags:
- mergekit
- merge
- llama-3.1
- roleplay
- function calling
base_model:
- T145/ZEUS-8B-V2
license: llama3.1
model-index:
- name: ZEUS-8B-V2-abliterated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 74.57
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 30.34
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 20.39
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.05
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.59
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.94
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=T145%2FZEUS-8B-V2-abliterated
name: Open LLM Leaderboard
---
# ZEUS 8B 🌩️ V2 - ABLITERATED
V2 abliterated using the following script:
```python
import gc
import random
import torch
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
MODEL_ID = "T145/ZEUS-8B-V2"
# More samples can help find the direction better.
NUM_PROMPT_SAMPLES = 32
# Used to skip the first and last layers for the modifications.
SKIP_BEGIN_LAYERS = 1
SKIP_END_LAYERS = 1
# The layer we will use for the refusal_dir calculation will be floor(LAYER_FRACTION_TO_USE * model.layers).
LAYER_FRACTION_TO_USE = 0.6
# Use a negative scale_factor to "induce" and a positive scale_factor of < 1 to "ablate" less.
SCALE_FACTOR = 1.0
torch.inference_mode()
torch.set_default_device("cpu")
torch.set_grad_enabled(False)
# Load the model on the GPU in quantized type if we can.
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16),
low_cpu_mem_usage=True,
device_map='auto'
)
model.requires_grad_(False)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
layer_idx = int(len(model.model.layers) * LAYER_FRACTION_TO_USE)
print("Layer index for refusal direction: " + str(layer_idx))
with open("harmful.txt", "r", encoding="utf-8") as f:
harmful = f.readlines()
with open("harmless.txt", "r", encoding="utf-8") as f:
harmless = f.readlines()
harmful_instructions = random.sample(harmful, min(NUM_PROMPT_SAMPLES, len(harmful)))
harmless_instructions = random.sample(harmless, min(NUM_PROMPT_SAMPLES, len(harmless)))
harmful_toks = [
tokenizer.apply_chat_template(conversation=[{"role": "user", "content": insn}], add_generation_prompt=True, tokenize=False,
return_tensors="pt") for insn in harmful_instructions]
harmless_toks = [
tokenizer.apply_chat_template(conversation=[{"role": "user", "content": insn}], add_generation_prompt=True, tokenize=False,
return_tensors="pt") for insn in harmless_instructions]
bar_generate = tqdm(total = len(harmful_instructions) + len(harmless_instructions), desc = "Generating samples")
# Only return the final hidden state of the layer we care about, and use 'cpu' to save VRAM.
def generate(toks):
inputs = tokenizer(toks, return_tensors="pt", padding=True)
inputs = inputs.to(model.device)
output = model.generate(
inputs['input_ids'],
use_cache=False,
max_new_tokens=1,
return_dict_in_generate=True,
output_hidden_states=True,
attention_mask=inputs["attention_mask"],
pad_token_id=tokenizer.eos_token_id
)
bar_generate.update(n=1)
return output.hidden_states[0][layer_idx][:, -1, :].to('cpu') # Final hidden state = -1.
harmful_hidden = [generate(toks) for toks in harmful_toks]
harmless_hidden = [generate(toks) for toks in harmless_toks]
bar_generate.close()
harmful_mean = torch.stack(harmful_hidden).mean(dim=0)
harmless_mean = torch.stack(harmless_hidden).mean(dim=0)
refusal_dir = harmful_mean - harmless_mean
refusal_dir = refusal_dir.squeeze() / refusal_dir.norm()
torch.save(refusal_dir, MODEL_ID.replace("/", "_") + "_refusal_dir.pt")
# Free memory
del model
gc.collect()
torch.cuda.empty_cache()
# Reload the model in CPU memory with bfloat16 data type
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map='cpu'
)
model.requires_grad_(False)
# Make sure it's on the 'cpu' device.
if refusal_dir.device != model.device:
refusal_dir = refusal_dir.to(model.device)
# Get the language model component and check it's as expected.
lm_model = model.model
assert hasattr(lm_model, 'layers'), "The model does not have the expected structure."
# Check the ranges are valid.
num_layers = len(lm_model.layers)
assert SKIP_BEGIN_LAYERS >= 0, "SKIP_BEGIN_LAYERS must be >= 0."
assert SKIP_END_LAYERS >= 0, "SKIP_END_LAYERS must be >= 0."
assert SKIP_BEGIN_LAYERS + SKIP_END_LAYERS < num_layers, "SKIP_BEGIN_LAYERS + SKIP_END_LAYERS must be < num_layers."
bar_layers = tqdm(total= (num_layers - (SKIP_BEGIN_LAYERS + SKIP_END_LAYERS)) * 2, desc = "Modifying tensors")
# NOTE: Use a negative scale_factor to "induce" and a positive scale_factor of < 1 to "ablate" less.
def modify_tensor(tensor_data, refusal_dir, scale_factor: float = 1.0):
assert scale_factor <= 1.0, "Using a scale_factor of > 1 doesn't make sense..."
tensor_float = tensor_data.to(torch.bfloat16)
refusal_dir_float = refusal_dir.to(torch.bfloat16)
tensor_float -= scale_factor * torch.matmul(torch.outer(refusal_dir_float, refusal_dir_float), tensor_float)
tensor_modified = tensor_float.to(torch.bfloat16)
bar_layers.update(1)
return torch.nn.Parameter(tensor_modified)
# Modify the 'self_attn.o_proj.weight' and 'mlp.down_proj.weight' in each chosen layer.
# NOTE: These tensors names are speific to "llama" and may need changing.
# - See here for others: https://github.com/arcee-ai/mergekit/tree/main/mergekit/_data/architectures
for layer_idx in range(SKIP_BEGIN_LAYERS, num_layers - SKIP_END_LAYERS):
lm_model.layers[layer_idx].self_attn.o_proj.weight = modify_tensor(
lm_model.layers[layer_idx].self_attn.o_proj.weight.data, refusal_dir, SCALE_FACTOR
)
lm_model.layers[layer_idx].mlp.down_proj.weight = modify_tensor(
lm_model.layers[layer_idx].mlp.down_proj.weight.data, refusal_dir, SCALE_FACTOR
)
bar_layers.close()
print("Saving modified model (with original tokenizer)...")
FIXED_ID = f"{MODEL_ID}-abliterated"
model.save_pretrained(FIXED_ID)
tokenizer.save_pretrained(FIXED_ID)
```
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [unsloth/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/unsloth/Meta-Llama-3.1-8B-Instruct) as a base.
### Models Merged
The following models were included in the merge:
* [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite)
* [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B)
* [Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2](https://huggingface.co/Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
dtype: bfloat16
merge_method: dare_ties
parameters:
int8_mask: 1.0
slices:
- sources:
- layer_range: [0, 32]
model: akjindal53244/Llama-3.1-Storm-8B
parameters:
density: 0.8
weight: 0.25
- layer_range: [0, 32]
model: arcee-ai/Llama-3.1-SuperNova-Lite
parameters:
density: 0.8
weight: 0.33
- layer_range: [0, 32]
model: Orenguteng/Llama-3.1-8B-Lexi-Uncensored-V2
parameters:
density: 0.8
weight: 0.42
- layer_range: [0, 32]
model: unsloth/Meta-Llama-3.1-8B-Instruct
tokenizer_source: base
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/T145__ZEUS-8B-V2-abliterated-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=T145%2FZEUS-8B-V2-abliterated&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 28.98|
|IFEval (0-Shot) | 74.57|
|BBH (3-Shot) | 30.34|
|MATH Lvl 5 (4-Shot)| 20.39|
|GPQA (0-shot) | 7.05|
|MuSR (0-shot) | 9.59|
|MMLU-PRO (5-shot) | 31.94|
|