|
import os |
|
import torch |
|
from typing import List, Optional, Union, Dict |
|
from sentencepiece import SentencePieceProcessor |
|
from transformers import PreTrainedTokenizer |
|
from transformers.utils import logging, PaddingStrategy |
|
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding |
|
|
|
|
|
class SPTokenizer: |
|
def __init__(self, model_path: str): |
|
|
|
assert os.path.isfile(model_path), model_path |
|
self.sp_model = SentencePieceProcessor(model_file=model_path) |
|
|
|
|
|
self.n_words: int = self.sp_model.vocab_size() |
|
self.bos_id: int = self.sp_model.bos_id() |
|
self.eos_id: int = self.sp_model.eos_id() |
|
self.pad_id: int = self.sp_model.unk_id() |
|
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() |
|
|
|
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] |
|
self.special_tokens = {} |
|
self.index_special_tokens = {} |
|
for token in special_tokens: |
|
self.special_tokens[token] = self.n_words |
|
self.index_special_tokens[self.n_words] = token |
|
self.n_words += 1 |
|
|
|
def tokenize(self, s: str): |
|
return self.sp_model.EncodeAsPieces(s) |
|
|
|
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: |
|
assert type(s) is str |
|
t = self.sp_model.encode(s) |
|
if bos: |
|
t = [self.bos_id] + t |
|
if eos: |
|
t = t + [self.eos_id] |
|
return t |
|
|
|
def decode(self, t: List[int]) -> str: |
|
return self.sp_model.decode(t) |
|
|
|
def decode_tokens(self, tokens: List[str]) -> str: |
|
text = self.sp_model.DecodePieces(tokens) |
|
return text |
|
|
|
def convert_token_to_id(self, token): |
|
""" Converts a token (str) in an id using the vocab. """ |
|
if token in self.special_tokens: |
|
return self.special_tokens[token] |
|
return self.sp_model.PieceToId(token) |
|
|
|
def convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
if index in self.index_special_tokens or index in [self.eos_id, self.bos_id, self.pad_id] or index < 0: |
|
return "" |
|
return self.sp_model.IdToPiece(index) |
|
|
|
|
|
class ChatGLMTokenizer(PreTrainedTokenizer): |
|
vocab_files_names = {"vocab_file": "tokenizer.model"} |
|
|
|
model_input_names = ["input_ids", "attention_mask", "position_ids"] |
|
|
|
def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs): |
|
self.name = "GLMTokenizer" |
|
|
|
self.vocab_file = vocab_file |
|
self.tokenizer = SPTokenizer(vocab_file) |
|
self.special_tokens = { |
|
"<bos>": self.tokenizer.bos_id, |
|
"<eos>": self.tokenizer.eos_id, |
|
"<pad>": self.tokenizer.pad_id |
|
} |
|
super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) |
|
|
|
def get_command(self, token): |
|
if token in self.special_tokens: |
|
return self.special_tokens[token] |
|
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" |
|
return self.tokenizer.special_tokens[token] |
|
|
|
@property |
|
def unk_token(self) -> str: |
|
return "<unk>" |
|
|
|
@property |
|
def pad_token(self) -> str: |
|
return "<unk>" |
|
|
|
@property |
|
def pad_token_id(self): |
|
return self.get_command("<pad>") |
|
|
|
@property |
|
def eos_token(self) -> str: |
|
return "</s>" |
|
|
|
@property |
|
def eos_token_id(self): |
|
return self.get_command("<eos>") |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.tokenizer.n_words |
|
|
|
def get_vocab(self): |
|
""" Returns vocab as a dict """ |
|
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def _tokenize(self, text, **kwargs): |
|
return self.tokenizer.tokenize(text) |
|
|
|
def _convert_token_to_id(self, token): |
|
""" Converts a token (str) in an id using the vocab. """ |
|
return self.tokenizer.convert_token_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.tokenizer.convert_id_to_token(index) |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]) -> str: |
|
return self.tokenizer.decode_tokens(tokens) |
|
|
|
def save_vocabulary(self, save_directory, filename_prefix=None): |
|
""" |
|
Save the vocabulary and special tokens file to a directory. |
|
|
|
Args: |
|
save_directory (`str`): |
|
The directory in which to save the vocabulary. |
|
filename_prefix (`str`, *optional*): |
|
An optional prefix to add to the named of the saved files. |
|
|
|
Returns: |
|
`Tuple(str)`: Paths to the files saved. |
|
""" |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, self.vocab_files_names["vocab_file"] |
|
) |
|
else: |
|
vocab_file = save_directory |
|
|
|
with open(self.vocab_file, 'rb') as fin: |
|
proto_str = fin.read() |
|
|
|
with open(vocab_file, "wb") as writer: |
|
writer.write(proto_str) |
|
|
|
return (vocab_file,) |
|
|
|
def get_prefix_tokens(self): |
|
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] |
|
return prefix_tokens |
|
|
|
def build_prompt(self, query, history=None): |
|
if history is None: |
|
history = [] |
|
prompt = "" |
|
for i, (old_query, response) in enumerate(history): |
|
prompt += "[Round {}]\n\n问:{}\n\n答:{}\n\n".format(i + 1, old_query, response) |
|
prompt += "[Round {}]\n\n问:{}\n\n答:".format(len(history) + 1, query) |
|
return prompt |
|
|
|
def build_inputs_with_special_tokens( |
|
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None |
|
) -> List[int]: |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
|
|
- single sequence: `[CLS] X [SEP]` |
|
- pair of sequences: `[CLS] A [SEP] B [SEP]` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
prefix_tokens = self.get_prefix_tokens() |
|
token_ids_0 = prefix_tokens + token_ids_0 |
|
if token_ids_1 is not None: |
|
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")] |
|
return token_ids_0 |
|
|
|
def _pad( |
|
self, |
|
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], |
|
max_length: Optional[int] = None, |
|
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, |
|
pad_to_multiple_of: Optional[int] = None, |
|
return_attention_mask: Optional[bool] = None, |
|
padding_side: Optional[str] = None, |
|
) -> dict: |
|
""" |
|
Pad encoded inputs (on left/right and up to predefined length or max length in the batch) |
|
|
|
Args: |
|
encoded_inputs: |
|
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). |
|
max_length: maximum length of the returned list and optionally padding length (see below). |
|
Will truncate by taking into account the special tokens. |
|
padding_strategy: PaddingStrategy to use for padding. |
|
|
|
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch |
|
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default) |
|
- PaddingStrategy.DO_NOT_PAD: Do not pad |
|
The tokenizer padding sides are defined in self.padding_side: |
|
|
|
- 'left': pads on the left of the sequences |
|
- 'right': pads on the right of the sequences |
|
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability |
|
`>= 7.5` (Volta). |
|
return_attention_mask: |
|
(optional) Set to False to avoid returning attention mask (default: set to model specifics) |
|
""" |
|
|
|
assert self.padding_side == "left" |
|
|
|
required_input = encoded_inputs[self.model_input_names[0]] |
|
seq_length = len(required_input) |
|
|
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
max_length = len(required_input) |
|
|
|
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): |
|
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of |
|
|
|
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length |
|
|
|
|
|
if "attention_mask" not in encoded_inputs: |
|
encoded_inputs["attention_mask"] = [1] * seq_length |
|
|
|
if "position_ids" not in encoded_inputs: |
|
encoded_inputs["position_ids"] = list(range(seq_length)) |
|
|
|
if needs_to_be_padded: |
|
difference = max_length - len(required_input) |
|
|
|
if "attention_mask" in encoded_inputs: |
|
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] |
|
if "position_ids" in encoded_inputs: |
|
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] |
|
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input |
|
|
|
return encoded_inputs |
|
|