"""largely copy from llama and adapt for cogvlm""" import warnings import packaging.version from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, Any import math import torch import transformers from torch import nn from torch.nn import CrossEntropyLoss from torchvision import transforms from einops import rearrange from transformers import PreTrainedModel, PreTrainedTokenizer from transformers.utils.logging import get_logger from transformers.activations import ACT2FN from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from .configuration_cogvlm import CogVLMConfig from .util import FastRotaryEmbedding from .visual import EVA2CLIPModel if TYPE_CHECKING: from transformers.utils import ModelOutput logger = get_logger(__name__) LANGUAGE_TOKEN_TYPE = 0 VISION_TOKEN_TYPE = 1 TRANSFORMERS_ABOVE_441 = ( True if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.42.0") else False ) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) class RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-5): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return (self.weight * hidden_states).to(input_dtype) class MLP(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def get_expert_mask(token_type_ids: "torch.LongTensor(B, L)") -> "[torch.BoolTensor(B, L), torch.BoolTensor(B, L)]": vision_token_mask = torch.zeros_like(token_type_ids, dtype=torch.bool) vision_token_mask[:, :-1] = (token_type_ids[:, :-1] == VISION_TOKEN_TYPE) & (token_type_ids[:, 1:] == VISION_TOKEN_TYPE) language_token_mask = ~vision_token_mask return vision_token_mask, language_token_mask class VisionExpertMLP(nn.Module): def __init__(self, config): super().__init__() self.language_mlp = MLP(config) self.vision_mlp = MLP(config) def forward(self, hidden_states: "torch.Tensor(B, L, D)", token_type_ids: "torch.LongTensor(B, L)"): output = torch.empty(hidden_states.shape, dtype=hidden_states.dtype, device=hidden_states.device) vision_token_mask, language_token_mask = get_expert_mask(token_type_ids) output[vision_token_mask] = self.vision_mlp(hidden_states[vision_token_mask]) output[language_token_mask] = self.language_mlp(hidden_states[language_token_mask]) return output def attention_fn( query_layer: "torch.tensor(B, H, L, HD)", key_layer: "torch.tensor(B, H, L, HD)", value_layer: "torch.tensor(B, H, L, HD)", attention_mask: "torch.tensor(B, H, L, HD)", *, scaling_attention_score: bool = True, attention_dropout: nn.Module = None ): attention_mask_bool = (attention_mask == 0) is_low_triangle = (attention_mask_bool == torch.ones_like(attention_mask_bool, dtype=torch.float).tril()).all() is_full = (attention_mask_bool > 0).all() if not (int(torch.__version__.split('.')[0]) >= 2): warnings.warn("It's recommended to use torch2.0 or higher.") if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle): dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p return torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attn_mask=None, dropout_p=dropout_p, is_causal=not is_full ) else: if scaling_attention_score: query_layer = query_layer / math.sqrt(query_layer.shape[-1]) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores + attention_mask attention_scores = nn.functional.softmax(attention_scores, dim=-1, dtype=torch.float32).to(query_layer.dtype) if attention_dropout is not None: attention_scores = attention_dropout(attention_scores) context_layer = torch.matmul(attention_scores, value_layer) return context_layer class VisionExpertAttention(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.num_multi_query_heads = config.num_multi_query_heads self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads self.stride = [self.num_attention_heads, self.num_multi_query_heads, self.num_multi_query_heads] self.qkv_size = self.hidden_size + self.hidden_size_per_attention_head * self.num_multi_query_heads * 2 self.head_dim = self.hidden_size // self.num_attention_heads self.max_position_embeddings = config.max_position_embeddings self.rotary_emb = FastRotaryEmbedding(dim=self.head_dim, pos_idx_in_fp32=False, base=500000) self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=True) self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.qkv_size, bias=False) self.language_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False) def _transpose_for_scores(self, tensor): """Transpose a 3D tensor [B, L, H*HD] into a 4D tensor with size [B H L HD].""" new_tensor_shape = tensor.size()[:-1] + \ (-1, # flexible for multi-query self.hidden_size_per_attention_head) tensor = tensor.view(*new_tensor_shape) return tensor.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, token_type_ids: torch.LongTensor, position_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() vision_token_mask, language_token_mask = get_expert_mask(token_type_ids) shape = list(hidden_states.shape) shape[-1] = self.qkv_size mixed_raw_layer = torch.empty(shape, dtype=hidden_states.dtype, device=hidden_states.device) mixed_raw_layer[vision_token_mask] = self.vision_expert_query_key_value(hidden_states[vision_token_mask]) mixed_raw_layer[language_token_mask] = self.language_expert_query_key_value(hidden_states[language_token_mask]) # query_states, key_states, value_states = torch.split(mixed_raw_layer, self.hidden_size, dim=-1) factor = mixed_raw_layer.size()[-1] // sum(self.stride) query_states, key_states, value_states = torch.split(mixed_raw_layer, [factor * x for x in self.stride], dim=-1) query_states = self._transpose_for_scores(query_states) # B, H, L, HD key_states = self._transpose_for_scores(key_states) # B, H, L, HD value_states = self._transpose_for_scores(value_states) # B, H, L, HD kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] query_states, key_states = self.rotary_emb(query_states, key_states, position_ids=position_ids, max_seqlen=position_ids.max() + 1) if past_key_value is not None: key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) past_key_value = (key_states, value_states) if use_cache else None key_states = key_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1, -1).contiguous().view( bsz, self.num_attention_heads, *key_states.shape[2:]) value_states = value_states.unsqueeze(2).expand(-1, -1, self.num_attention_heads // self.num_multi_query_heads, -1, -1).contiguous().view(bsz, self.num_attention_heads, *value_states.shape[2:]) context_layer = attention_fn( query_layer=query_states, key_layer=key_states, value_layer=value_states, attention_mask=attention_mask, scaling_attention_score=True, attention_dropout=None) if context_layer.size() != (bsz, self.num_attention_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_attention_heads, q_len, self.head_dim)}, but is" f" {context_layer.size()}" ) context_layer = context_layer.transpose(1, 2).contiguous().reshape(bsz, q_len, self.hidden_size) attn_output = torch.empty(context_layer.shape, dtype=hidden_states.dtype, device=hidden_states.device) attn_output[vision_token_mask] = self.vision_expert_dense(context_layer[vision_token_mask]) attn_output[language_token_mask] = self.language_expert_dense(context_layer[language_token_mask]) if output_attentions: warnings.warn("output_attentions is not implemented.") return attn_output, None, past_key_value class CogVLMDecoderLayer(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.self_attn = VisionExpertAttention(config=config) self.mlp = VisionExpertMLP(config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, token_type_ids: torch.LongTensor, position_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, token_type_ids=token_type_ids, position_ids=position_ids, attention_mask=attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states, token_type_ids=token_type_ids) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) return outputs # type: ignore class CogVLMPreTrainedModel(PreTrainedModel): config_class = CogVLMConfig base_model_prefix = "model" supports_gradient_checkpointing = False _no_split_modules = ["CogVLMDecoderLayer"] _skip_keys_device_placement = "past_key_values" def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def is_empty(images_list: Optional[List[List[torch.Tensor]]]): if images_list is None or len(images_list) == 0: return True for image_list in images_list: if len(image_list): return False return True def build_position_ids(x: "torch.BoolTensor(B, L)", attention_mask: Optional["torch.BoolTensor(B, L)"] = None) -> "torch.LongTensor(B, L)": if attention_mask is not None: tmp = x.clone() tmp[~(attention_mask.bool())] = -1 else: tmp = x.clone() # image boi eoi token as LANGUAGE_TOKEN_TYPE is_boi_eoi = torch.zeros_like(x, dtype=torch.bool) is_boi_eoi[:, 1:] |= (tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE) is_boi_eoi[:, 0] |= (tmp[:, 0] == VISION_TOKEN_TYPE) is_boi_eoi[:, :-1] |= (tmp[:, :-1] == VISION_TOKEN_TYPE) & (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) is_boi_eoi[:, -1] |= (tmp[:, -1] == VISION_TOKEN_TYPE) tmp[is_boi_eoi] = LANGUAGE_TOKEN_TYPE # final position ids y = torch.zeros_like(x, dtype=torch.long) y[:, 1:] = (tmp[:, 1:] == LANGUAGE_TOKEN_TYPE) | ((tmp[:, 1:] == VISION_TOKEN_TYPE) & (tmp[:, :-1] == LANGUAGE_TOKEN_TYPE)) y = y.cumsum(dim=-1) return y class CogVLMModel(CogVLMPreTrainedModel): def __init__(self, config): super().__init__(config) self.padding_idx = 128002 self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList([CogVLMDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.vision = EVA2CLIPModel(config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def encode_images(self, images: List[List[torch.Tensor]]) -> torch.Tensor: images_list, images = images, [] images = [] for image_list in images_list: for image in image_list: images.append(image) images = torch.stack(images) images_features = self.vision(images) return images_features def forward( self, input_ids: torch.LongTensor = None, images: List[List[torch.Tensor]] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: """take care of image_encode, token_type_ids, position_ids and (attention_mask = None is fine)""" if past_key_values is not None: pass # generate mode with past_key_values. the image features are already mapped else: # not allow for inputs_embeds, because we want to process image feature assert input_ids is not None and inputs_embeds is None, f"{input_ids} {inputs_embeds}" if not is_empty(images): # multi-modality assert token_type_ids is not None, f"multi-modality requires `token_type_ids`!" assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}" inputs_embeds = self.embed_tokens(input_ids) images_features = self.encode_images(images) images_features = rearrange(images_features, 'b n d -> (b n) d') images_features = images_features.to(dtype=inputs_embeds.dtype, device=inputs_embeds.device) inputs_embeds = inputs_embeds.index_put([token_type_ids == VISION_TOKEN_TYPE], images_features) else: # single-modality if token_type_ids is None: token_type_ids = torch.ones_like(input_ids, dtype=torch.long, device=input_ids.device) * LANGUAGE_TOKEN_TYPE assert not (token_type_ids == VISION_TOKEN_TYPE).any(), f"{(token_type_ids == VISION_TOKEN_TYPE).sum()}" inputs_embeds = self.embed_tokens(input_ids) if position_ids is None: position_ids = build_position_ids(token_type_ids, attention_mask) input_ids = None return self.llm_forward( input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) def llm_forward( self, input_ids: torch.LongTensor = None, token_type_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: """largely copy from llama forward and adapt for cogvlm with `token_type_ids`""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # embed positions if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device ) attention_mask = self._prepare_decoder_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length ) hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) past_key_value = past_key_values[idx] if past_key_values is not None else None layer_outputs = decoder_layer( hidden_states, token_type_ids=token_type_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # noinspection PyMethodMayBeStatic # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def _history_to_prompt(signal_type, history, query): if signal_type == 'base': return query elif signal_type == 'vqa': answer_format = 'Short answer:' elif signal_type == 'chat': answer_format = 'Answer:' else: assert False, f"Unknown signal type {signal_type}" prompt = '' for i, (old_query, response) in enumerate(history): prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n" prompt += 'Question: {} {}'.format(query, answer_format) return prompt class CogVLMForCausalLM(CogVLMPreTrainedModel): _auto_class = "AutoModelForCausalLM" def __init__(self, config): super().__init__(config) self.model = CogVLMModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model def forward( self, input_ids: torch.LongTensor = None, images: List[List[torch.Tensor]] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, images=images, token_type_ids=token_type_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def _prepare_attention_mask_for_generation( self, inputs: torch.Tensor, pad_token_id: Optional[int], eos_token_id: Optional[Union[int, List[int]]], ) -> torch.LongTensor: return torch.ones(inputs.shape[:2], dtype=torch.long, device=inputs.device) # type: ignore def prepare_inputs_for_generation( self, input_ids, token_type_ids, images=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs ): # build position_ids if needed position_ids = kwargs.get("position_ids", None) if position_ids is None: position_ids = build_position_ids(token_type_ids, attention_mask) if past_key_values: input_ids = input_ids[:, -1:] token_type_ids = token_type_ids[:, -1:] position_ids = position_ids[:, -1:] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "token_type_ids": token_type_ids, "images": images, "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs def _update_model_kwargs_for_generation( self, outputs: "ModelOutput", model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, standardize_cache_format: bool = False, ) -> Dict[str, Any]: # update past_key_values if TRANSFORMERS_ABOVE_441: cache_name, cache = self._extract_past_from_model_output(outputs) model_kwargs[cache_name] = cache else: model_kwargs["past_key_values"] = self._extract_past_from_model_output( outputs, standardize_cache_format=standardize_cache_format ) if getattr(outputs, "state", None) is not None: model_kwargs["state"] = outputs.state # update token_type_ids with last value if "token_type_ids" in model_kwargs: token_type_ids = model_kwargs["token_type_ids"] new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype, device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1) if not is_encoder_decoder: # update attention mask if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 ) else: # update decoder attention mask if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] model_kwargs["decoder_attention_mask"] = torch.cat( [decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))], dim=-1, ) return model_kwargs def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past def build_conversation_input_ids( self, tokenizer: "PreTrainedTokenizer", *, query: str, history: Optional[List[Tuple[str, str]]] = None, images: Optional[List["PIL.Image"]] = None, template_version: Optional[Literal["base", "chat", "vqa"]] = None, answer: str = None, ): image_size: int = self.config.vision_config['image_size'] patch_size: int = self.config.vision_config['patch_size'] template_version = template_version or self.config.template_version assert images is None or len(images) <= 1, f"not support multi images by now." history = history or [] text = _history_to_prompt(template_version, history, query) input_ids = [tokenizer.bos_token_id] token_type_ids = [LANGUAGE_TOKEN_TYPE] if images is not None and len(images) == 1: # vision transform = transforms.Compose( [ transforms.Resize( (image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ] ) images = [transform(images[0])] # language vision_token_num = (image_size // patch_size // 2) * (image_size // patch_size // 2) + 2 tokenizer.pad_token_id = 128002 # llama3 adapt for cogvlm input_ids += [tokenizer.pad_token_id] * vision_token_num token_type_ids += [VISION_TOKEN_TYPE] * vision_token_num text_ids = tokenizer.encode(text, add_special_tokens=False) if answer is not None: answer_ids = tokenizer.encode(answer, add_special_tokens=False) answer_ids += [tokenizer.eos_token_id] text_ids += answer_ids input_ids += text_ids token_type_ids += [LANGUAGE_TOKEN_TYPE] * len(text_ids) attention_mask = [1] * len(input_ids) if answer is not None: labels = [-100 for _ in range(len(input_ids) - len(answer_ids))] + answer_ids labels = torch.tensor(labels, dtype=torch.long) else: labels = None return { 'input_ids': torch.tensor(input_ids, dtype=torch.long), 'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long), 'attention_mask': torch.tensor(attention_mask, dtype=torch.long), 'images': images, 'labels': labels, }