Ubuntu commited on
Commit
368f865
·
1 Parent(s): 269b8ba

english readme

Browse files
Files changed (3) hide show
  1. README.md +12 -12
  2. README_en.md +182 -0
  3. generation_config.json +13 -0
README.md CHANGED
@@ -15,11 +15,15 @@ inference: false
15
 
16
  # GLM-4-9B-Chat
17
 
18
- GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。
19
- 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。
20
- 除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K
21
- 上下文)等高级功能。
22
- 本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的模型。
 
 
 
 
23
 
24
  ## 评测结果
25
 
@@ -31,7 +35,6 @@ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开
31
  | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
32
  | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
33
 
34
-
35
  ### 长文本
36
 
37
  在 1M 的上下文长度下进行[大海捞针实验](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py),结果如下:
@@ -55,11 +58,10 @@ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开
55
  | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te
56
  | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi
57
 
58
-
59
-
60
  ### 工具调用能力
61
 
62
- 我们在 [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard)上进行了测试并得到了以下结果:
 
63
 
64
  | Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
65
  |:-----------------------|:------------:|:-----------:|:------------:|:---------:|
@@ -80,7 +82,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
80
 
81
  device = "cuda"
82
 
83
- tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat",trust_remote_code=True)
84
 
85
  query = "你好"
86
 
@@ -145,8 +147,6 @@ print(outputs[0].outputs[0].text)
145
 
146
  GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
147
 
148
- Rhe use of the GLM-4 model weights needs to comply with the [LICENSE](LICENSE).
149
-
150
  ## 引用
151
 
152
  如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
 
15
 
16
  # GLM-4-9B-Chat
17
 
18
+ Read this in [English](README_en.md)
19
+
20
+ GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,
21
+ **GLM-4-9B** 及其人类偏好对齐的版本 **GLM-4-9B-Chat** 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
22
+ 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
23
+ 26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 **GLM-4-9B-Chat-1M** 模型和基于 GLM-4-9B 的多模态模型
24
+ GLM-4V-9B。**GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
25
+ 表现出超越 GPT-4-turbo-2024-04-09、Gemini
26
+ 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
27
 
28
  ## 评测结果
29
 
 
35
  | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
36
  | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
37
 
 
38
  ### 长文本
39
 
40
  在 1M 的上下文长度下进行[大海捞针实验](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py),结果如下:
 
58
  | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te
59
  | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi
60
 
 
 
61
  ### 工具调用能力
62
 
63
+ 我们在 [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard)
64
+ 上进行了测试并得到了以下结果:
65
 
66
  | Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
67
  |:-----------------------|:------------:|:-----------:|:------------:|:---------:|
 
82
 
83
  device = "cuda"
84
 
85
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
86
 
87
  query = "你好"
88
 
 
147
 
148
  GLM-4 模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
149
 
 
 
150
  ## 引用
151
 
152
  如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
README_en.md ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: glm-4
4
+ license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
5
+
6
+ language:
7
+ - zh
8
+ - en
9
+ tags:
10
+ - glm
11
+ - chatglm
12
+ - thudm
13
+ inference: false
14
+ ---
15
+
16
+ # GLM-4-9B-Chat
17
+
18
+ ## Model Introduction
19
+
20
+ GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
21
+ AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
22
+ and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
23
+ addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
24
+ custom tool calls (Function Call), and long text
25
+ reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
26
+ languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
27
+ context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
28
+ **GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
29
+ In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
30
+ text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
31
+ GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
32
+
33
+ ## Benchmark
34
+
35
+ We evaluated the GLM-4-9B-Chat model on some classic tasks and obtained the following results:
36
+
37
+ | Model | AlignBench-v2 | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NCB |
38
+ |:--------------------|:-------------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----:|
39
+ | Llama-3-8B-Instruct | 5.12 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
40
+ | ChatGLM3-6B | 3.97 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
41
+ | GLM-4-9B-Chat | 6.61 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
42
+
43
+ ### Long Context
44
+
45
+ The [eval_needle experiment](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py) was conducted with
46
+ a context length of 1M, and the results are as follows:
47
+
48
+ ![needle](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/eval_needle.jpeg)
49
+
50
+ The long text capability was further evaluated on LongBench, and the results are as follows:
51
+
52
+ ![leaderboard](https://raw.githubusercontent.com/THUDM/GLM-4/main/resources/longbench.png)
53
+
54
+ ### Multi Language
55
+
56
+ The tests for GLM-4-9B-Chat and Llama-3-8B-Instruct are conducted on six multilingual datasets. The test results and the
57
+ corresponding languages selected for each dataset are shown in the table below:
58
+
59
+ | Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
60
+ |:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
61
+ | M-MMLU | 49.6 | 56.6 | all |
62
+ | FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
63
+ | MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
64
+ | XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
65
+ | XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
66
+ | XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
67
+
68
+ ### Function Call
69
+
70
+ Tested
71
+ on [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard).
72
+
73
+ | Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
74
+ |:-----------------------|:------------:|:-----------:|:------------:|:---------:|
75
+ | Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
76
+ | gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
77
+ | ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
78
+ | GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
79
+
80
+ **This repository is the model repository of GLM-4-9B-Chat, supporting `128K` context length.**
81
+
82
+ ## Quick call
83
+
84
+ **For hardware configuration and system requirements, please check [here](basic_demo/README_en.md).**
85
+
86
+ ### Use the following method to quickly call the GLM-4-9B-Chat language model
87
+
88
+ Use the transformers backend for inference:
89
+
90
+ ```python
91
+ import torch
92
+ from transformers import AutoModelForCausalLM, AutoTokenizer
93
+
94
+ device = "cuda"
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
97
+
98
+ query = "Hello"
99
+
100
+ inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
101
+ add_generation_prompt=True,
102
+ tokenize=True,
103
+ return_tensors="pt",
104
+ return_dict=True
105
+ )
106
+
107
+ inputs = inputs.to(device)
108
+ model = AutoModelForCausalLM.from_pretrained(
109
+ "THUDM/glm-4-9b-chat",
110
+ torch_dtype=torch.bfloat16,
111
+ low_cpu_mem_usage=True,
112
+ trust_remote_code=True
113
+ ).to(device).eval()
114
+
115
+ gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
116
+ with torch.no_grad():
117
+ outputs = model.generate(**inputs, **gen_kwargs)
118
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
119
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
120
+ ```
121
+
122
+ Use the vLLM backend for inference:
123
+
124
+ ```python
125
+ from transformers import AutoTokenizer
126
+ from vllm import LLM, SamplingParams
127
+
128
+ # GLM-4-9B-Chat-1M
129
+ # max_model_len, tp_size = 1048576, 4
130
+
131
+ # GLM-4-9B-Chat
132
+ # If you encounter OOM, it is recommended to reduce max_model_len or increase tp_size
133
+ max_model_len, tp_size = 131072, 1
134
+ model_name = "THUDM/glm-4-9b-chat"
135
+ prompt = [{"role": "user", "content": "你好"}]
136
+
137
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
138
+ llm = LLM(
139
+ model=model_name,
140
+ tensor_parallel_size=tp_size,
141
+ max_model_len=max_model_len,
142
+ trust_remote_code=True,
143
+ enforce_eager=True,
144
+ # GLM-4-9B-Chat-1M If you encounter OOM phenomenon, it is recommended to enable the following parameters
145
+ # enable_chunked_prefill=True,
146
+ # max_num_batched_tokens=8192
147
+ )
148
+ stop_token_ids = [151329, 151336, 151338]
149
+ sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
150
+
151
+ inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
152
+ outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
153
+
154
+ print(outputs[0].outputs[0].text)
155
+ ```
156
+
157
+ ## LICENSE
158
+
159
+ The weights of the GLM-4 model are available under the terms of [LICENSE](LICENSE).
160
+
161
+ ## Citations
162
+
163
+ If you find our work useful, please consider citing the following paper.
164
+
165
+ ```
166
+ @article{zeng2022glm,
167
+ title={Glm-130b: An open bilingual pre-trained model},
168
+ author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
169
+ journal={arXiv preprint arXiv:2210.02414},
170
+ year={2022}
171
+ }
172
+ ```
173
+
174
+ ```
175
+ @inproceedings{du2022glm,
176
+ title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
177
+ author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
178
+ booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
179
+ pages={320--335},
180
+ year={2022}
181
+ }
182
+ ```
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eos_token_id": [
3
+ 151329,
4
+ 151336,
5
+ 151338
6
+ ],
7
+ "pad_token_id": 151329,
8
+ "do_sample": true,
9
+ "temperature": 0.8,
10
+ "max_length": 128000,
11
+ "top_p": 0.8,
12
+ "transformers_version": "4.38.2"
13
+ }