duzx16
commited on
Commit
·
835c717
1
Parent(s):
dba7772
Add eager and sdpa attention implementations
Browse files- config.json +1 -0
- modeling_chatglm.py +90 -81
config.json
CHANGED
@@ -17,6 +17,7 @@
|
|
17 |
"apply_residual_connection_post_layernorm": false,
|
18 |
"attention_dropout": 0.0,
|
19 |
"attention_softmax_in_fp32": true,
|
|
|
20 |
"bias_dropout_fusion": true,
|
21 |
"ffn_hidden_size": 13696,
|
22 |
"fp32_residual_connection": false,
|
|
|
17 |
"apply_residual_connection_post_layernorm": false,
|
18 |
"attention_dropout": 0.0,
|
19 |
"attention_softmax_in_fp32": true,
|
20 |
+
"attn_implementation": "sdpa",
|
21 |
"bias_dropout_fusion": true,
|
22 |
"ffn_hidden_size": 13696,
|
23 |
"fp32_residual_connection": false,
|
modeling_chatglm.py
CHANGED
@@ -40,6 +40,7 @@ logger = logging.get_logger(__name__)
|
|
40 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
41 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
42 |
|
|
|
43 |
def default_init(cls, *args, **kwargs):
|
44 |
return cls(*args, **kwargs)
|
45 |
|
@@ -183,93 +184,99 @@ class CoreAttention(torch.nn.Module):
|
|
183 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
184 |
|
185 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
else:
|
200 |
-
# Raw attention scores
|
201 |
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
-
|
211 |
-
matmul_input_buffer = torch.empty(
|
212 |
-
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
213 |
-
device=query_layer.device
|
214 |
-
)
|
215 |
|
216 |
-
# Raw attention scores. [b * np, sq, sk]
|
217 |
-
matmul_result = torch.baddbmm(
|
218 |
-
matmul_input_buffer,
|
219 |
-
query_layer, # [b * np, sq, hn]
|
220 |
-
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
221 |
-
beta=0.0,
|
222 |
-
alpha=(1.0 / self.norm_factor),
|
223 |
-
)
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
# attention scores and attention mask [b, np, sq, sk]
|
233 |
-
if self.attention_softmax_in_fp32:
|
234 |
-
attention_scores = attention_scores.float()
|
235 |
-
if self.coeff is not None:
|
236 |
-
attention_scores = attention_scores * self.coeff
|
237 |
-
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
238 |
-
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
239 |
-
device=attention_scores.device, dtype=torch.bool)
|
240 |
-
attention_mask.tril_()
|
241 |
-
attention_mask = ~attention_mask
|
242 |
if attention_mask is not None:
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
attention_probs = self.attention_dropout(attention_probs)
|
250 |
-
|
251 |
-
# query layer shape: [b * np, sq, hn]
|
252 |
-
# value layer shape: [b, np, sk, hn]
|
253 |
-
# attention shape: [b, np, sq, sk]
|
254 |
-
# context layer shape: [b, np, sq, hn]
|
255 |
-
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
256 |
-
# change view [b * np, sk, hn]
|
257 |
-
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
258 |
-
# change view [b * np, sq, sk]
|
259 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
260 |
-
# matmul: [b * np, sq, hn]
|
261 |
-
context_layer = torch.bmm(attention_probs, value_layer)
|
262 |
-
# change view [b, np, sq, hn]
|
263 |
-
context_layer = context_layer.view(*output_size)
|
264 |
-
# [b, np, sq, hn] --> [b, sq, np, hn]
|
265 |
-
context_layer = context_layer.transpose(1, 2).contiguous()
|
266 |
-
# [b, sq, np, hn] --> [b, sq, hp]
|
267 |
-
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
268 |
-
context_layer = context_layer.reshape(*new_context_layer_shape)
|
269 |
-
|
270 |
return context_layer
|
271 |
|
272 |
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
class SelfAttention(torch.nn.Module):
|
274 |
"""Parallel self-attention layer abstract class.
|
275 |
|
@@ -299,7 +306,7 @@ class SelfAttention(torch.nn.Module):
|
|
299 |
device=device, **_config_to_kwargs(config)
|
300 |
)
|
301 |
|
302 |
-
self.core_attention =
|
303 |
|
304 |
# Output.
|
305 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
@@ -378,7 +385,8 @@ class SelfAttention(torch.nn.Module):
|
|
378 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
379 |
if use_cache:
|
380 |
if kv_cache is None:
|
381 |
-
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
|
|
382 |
else:
|
383 |
kv_cache = (key_layer, value_layer)
|
384 |
else:
|
@@ -724,7 +732,8 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
724 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
725 |
)
|
726 |
|
727 |
-
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
|
|
728 |
device=device, dtype=config.torch_dtype)
|
729 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
730 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|
|
|
40 |
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
|
41 |
_CONFIG_FOR_DOC = "ChatGLMConfig"
|
42 |
|
43 |
+
|
44 |
def default_init(cls, *args, **kwargs):
|
45 |
return cls(*args, **kwargs)
|
46 |
|
|
|
184 |
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
|
185 |
|
186 |
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
187 |
+
# [b, np, sq, sk]
|
188 |
+
output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
|
189 |
+
|
190 |
+
# [b, np, sq, hn] -> [b * np, sq, hn]
|
191 |
+
query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
|
192 |
+
# [b, np, sk, hn] -> [b * np, sk, hn]
|
193 |
+
key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
|
194 |
+
|
195 |
+
# preallocting input tensor: [b * np, sq, sk]
|
196 |
+
matmul_input_buffer = torch.empty(
|
197 |
+
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
|
198 |
+
device=query_layer.device
|
199 |
+
)
|
|
|
|
|
200 |
|
201 |
+
# Raw attention scores. [b * np, sq, sk]
|
202 |
+
matmul_result = torch.baddbmm(
|
203 |
+
matmul_input_buffer,
|
204 |
+
query_layer, # [b * np, sq, hn]
|
205 |
+
key_layer.transpose(1, 2), # [b * np, hn, sk]
|
206 |
+
beta=0.0,
|
207 |
+
alpha=(1.0 / self.norm_factor),
|
208 |
+
)
|
209 |
|
210 |
+
# change view to [b, np, sq, sk]
|
211 |
+
attention_scores = matmul_result.view(*output_size)
|
212 |
+
|
213 |
+
# ===========================
|
214 |
+
# Attention probs and dropout
|
215 |
+
# ===========================
|
216 |
+
|
217 |
+
# attention scores and attention mask [b, np, sq, sk]
|
218 |
+
if self.attention_softmax_in_fp32:
|
219 |
+
attention_scores = attention_scores.float()
|
220 |
+
if self.coeff is not None:
|
221 |
+
attention_scores = attention_scores * self.coeff
|
222 |
+
if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
|
223 |
+
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
|
224 |
+
device=attention_scores.device, dtype=torch.bool)
|
225 |
+
attention_mask.tril_()
|
226 |
+
attention_mask = ~attention_mask
|
227 |
+
if attention_mask is not None:
|
228 |
+
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
|
229 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
230 |
+
attention_probs = attention_probs.type_as(value_layer)
|
231 |
+
|
232 |
+
# This is actually dropping out entire tokens to attend to, which might
|
233 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
234 |
+
attention_probs = self.attention_dropout(attention_probs)
|
235 |
+
|
236 |
+
# query layer shape: [b * np, sq, hn]
|
237 |
+
# value layer shape: [b, np, sk, hn]
|
238 |
+
# attention shape: [b, np, sq, sk]
|
239 |
+
# context layer shape: [b, np, sq, hn]
|
240 |
+
output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
|
241 |
+
# change view [b * np, sk, hn]
|
242 |
+
value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
|
243 |
+
# change view [b * np, sq, sk]
|
244 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
245 |
+
# matmul: [b * np, sq, hn]
|
246 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
247 |
+
# change view [b, np, sq, hn]
|
248 |
+
context_layer = context_layer.view(*output_size)
|
249 |
+
# [b, np, sq, hn] --> [b, sq, np, hn]
|
250 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
251 |
+
# [b, sq, np, hn] --> [b, sq, hp]
|
252 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
253 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
254 |
|
255 |
+
return context_layer
|
|
|
|
|
|
|
|
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
+
class SdpaAttention(CoreAttention):
|
259 |
+
def forward(self, query_layer, key_layer, value_layer, attention_mask):
|
260 |
+
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
261 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
262 |
+
is_causal=True)
|
263 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
if attention_mask is not None:
|
265 |
+
attention_mask = ~attention_mask
|
266 |
+
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
|
267 |
+
attention_mask)
|
268 |
+
context_layer = context_layer.transpose(1, 2).contiguous()
|
269 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
270 |
+
context_layer = context_layer.reshape(*new_context_layer_shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
return context_layer
|
272 |
|
273 |
|
274 |
+
CORE_ATTENTION_CLASSES = {
|
275 |
+
"eager": CoreAttention,
|
276 |
+
"sdpa": SdpaAttention,
|
277 |
+
}
|
278 |
+
|
279 |
+
|
280 |
class SelfAttention(torch.nn.Module):
|
281 |
"""Parallel self-attention layer abstract class.
|
282 |
|
|
|
306 |
device=device, **_config_to_kwargs(config)
|
307 |
)
|
308 |
|
309 |
+
self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
|
310 |
|
311 |
# Output.
|
312 |
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
|
|
|
385 |
value_layer = torch.cat((cache_v, value_layer), dim=2)
|
386 |
if use_cache:
|
387 |
if kv_cache is None:
|
388 |
+
kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
|
389 |
+
dim=1)
|
390 |
else:
|
391 |
kv_cache = (key_layer, value_layer)
|
392 |
else:
|
|
|
732 |
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
|
733 |
)
|
734 |
|
735 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
|
736 |
+
original_impl=config.original_rope,
|
737 |
device=device, dtype=config.torch_dtype)
|
738 |
self.encoder = init_method(GLMTransformer, config, **init_kwargs)
|
739 |
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
|