--- license: apache-2.0 datasets: - THUdyh/Oryx-SFT-Data base_model: - 01-ai/Yi-1.5-34B pipeline_tag: text-generation --- # Oryx-34B ## Model Summary The Oryx models are 7/34B parameter models trained on [Oryx-SFT-Data](https://huggingface.co/datasets/THUdyh/Oryx-SFT-Data), based on Qwen2 language model with a context window of 32K tokens. Oryx offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths. - **Repository:** https://github.com/Oryx-mllm/Oryx - **Languages:** English, Chinese - **Paper:** https://arxiv.org/abs/2409.12961 ## Use We provide a simple generation process for using our model. For more details, please refer to our [Github Repo](https://github.com/liuzuyan/oryx) ``` from oryx.model.builder import load_pretrained_model from oryx.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token from oryx.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX from oryx.conversation import conv_templates, SeparatorStyle from PIL import Image import requests import copy import torch import sys import warnings from decord import VideoReader, cpu import numpy as np def load_video(self, video_path, max_frames_num,fps=1,force_sample=False): if max_frames_num == 0: return np.zeros((1, 336, 336, 3)) vr = VideoReader(video_path, ctx=cpu(0),num_threads=1) total_frame_num = len(vr) video_time = total_frame_num / vr.get_avg_fps() fps = round(vr.get_avg_fps()/fps) frame_idx = [i for i in range(0, len(vr), fps)] frame_time = [i/fps for i in frame_idx] if len(frame_idx) > max_frames_num or force_sample: sample_fps = max_frames_num uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int) frame_idx = uniform_sampled_frames.tolist() frame_time = [i/vr.get_avg_fps() for i in frame_idx] frame_time = ",".join([f"{i:.2f}s" for i in frame_time]) spare_frames = vr.get_batch(frame_idx).asnumpy() # import pdb;pdb.set_trace() return spare_frames,frame_time,video_time pretrained = "THUdyh/Oryx-7B" model_name = "oryx_qwen" device = "cuda" device_map = "auto" tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map) model.eval() video_path = "" max_frames_num = "64" video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True) video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().bfloat16() video = [video] video_data = (video, video) input_data = (video_data, (384, 384), "video") conv_template = "qwen_1_5" question = DEFAULT_IMAGE_TOKEN + "\nPlease describe this video in detail." conv = copy.deepcopy(conv_templates[conv_template]) conv.append_message(conv.roles[0], question) conv.append_message(conv.roles[1], None) prompt_question = conv.get_prompt() input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) output_ids = model.generate( inputs=input_ids, images=input_data[0][0], images_highres=input_data[0][1], modalities=video_data[2], do_sample=False, temperature=0, max_new_tokens=128, use_cache=True, ) text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True) print(text_outputs) ``` ### Results #### General Video Benchmark image/png #### Long-Form Video Understanding image/png #### Common Image Benchmark image/png #### 3D Spatial Understanding image/png ### Model Architecture - **Architecture:** Pre-trained [Oryx-ViT](https://huggingface.co/THUdyh/Oryx-ViT) + Yi-1.5-34B - **Init Model:** [Oryx-34B-Image](https://huggingface.co/THUdyh/Oryx-34B-Image) - **Data:** a mixture of 1.2M image/video data - **Precision:** BFloat16 #### Hardware & Software - **Hardware:** 64 * NVIDIA Tesla A100 - **Orchestration:** HuggingFace Trainer - **Code:** Pytorch ## Citation