TTPlanet commited on
Commit
6c6298e
·
verified ·
1 Parent(s): aa289db

better pre-processor for comfyui

Browse files

update the pre-processor to better version!

Files changed (1) hide show
  1. TTP_tile_preprocessor_v5.py +191 -0
TTP_tile_preprocessor_v5.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from PIL import Image
4
+ import torch
5
+
6
+ def pil2tensor(image: Image) -> torch.Tensor:
7
+ return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
8
+
9
+ def tensor2pil(t_image: torch.Tensor) -> Image:
10
+ return Image.fromarray(np.clip(255.0 * t_image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))
11
+
12
+ def apply_gaussian_blur(image_np, ksize=5, sigmaX=1.0):
13
+ if ksize % 2 == 0:
14
+ ksize += 1 # ksize must be odd
15
+ blurred_image = cv2.GaussianBlur(image_np, (ksize, ksize), sigmaX=sigmaX)
16
+ return blurred_image
17
+
18
+ def apply_guided_filter(image_np, radius, eps):
19
+ # Convert image to float32 for the guided filter
20
+ image_np_float = np.float32(image_np) / 255.0
21
+ # Apply the guided filter
22
+ filtered_image = cv2.ximgproc.guidedFilter(image_np_float, image_np_float, radius, eps)
23
+ # Scale back to uint8
24
+ filtered_image = np.clip(filtered_image * 255, 0, 255).astype(np.uint8)
25
+ return filtered_image
26
+
27
+ class TTPlanet_Tile_Preprocessor_GF:
28
+ def __init__(self, blur_strength=3.0, radius=7, eps=0.01):
29
+ self.blur_strength = blur_strength
30
+ self.radius = radius
31
+ self.eps = eps
32
+
33
+ @classmethod
34
+ def INPUT_TYPES(cls):
35
+ return {
36
+ "required": {
37
+ "image": ("IMAGE",),
38
+ "scale_factor": ("FLOAT", {"default": 1.00, "min": 1.00, "max": 8.00, "step": 0.05}),
39
+ "blur_strength": ("FLOAT", {"default": 2.0, "min": 1.0, "max": 10.0, "step": 0.1}),
40
+ "radius": ("INT", {"default": 7, "min": 1, "max": 20, "step": 1}),
41
+ "eps": ("FLOAT", {"default": 0.01, "min": 0.001, "max": 0.1, "step": 0.001}),
42
+ },
43
+ "optional": {}
44
+ }
45
+
46
+ RETURN_TYPES = ("IMAGE",)
47
+ RETURN_NAMES = ("image_output",)
48
+ FUNCTION = 'process_image'
49
+ CATEGORY = 'TTP_TILE'
50
+
51
+ def process_image(self, image, scale_factor, blur_strength, radius, eps):
52
+ ret_images = []
53
+
54
+ for i in image:
55
+ # Convert tensor to PIL for processing
56
+ _canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
57
+ img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
58
+
59
+ # Apply Gaussian blur
60
+ img_np = apply_gaussian_blur(img_np, ksize=int(blur_strength), sigmaX=blur_strength / 2)
61
+
62
+ # Apply Guided Filter
63
+ img_np = apply_guided_filter(img_np, radius, eps)
64
+
65
+
66
+ # Resize image
67
+ height, width = img_np.shape[:2]
68
+ new_width = int(width / scale_factor)
69
+ new_height = int(height / scale_factor)
70
+ resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
71
+ resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_CUBIC)
72
+
73
+
74
+
75
+ # Convert OpenCV back to PIL and then to tensor
76
+ pil_img = Image.fromarray(resized_img[:, :, ::-1]) # BGR to RGB
77
+ tensor_img = pil2tensor(pil_img)
78
+ ret_images.append(tensor_img)
79
+
80
+ return (torch.cat(ret_images, dim=0),)
81
+
82
+ class TTPlanet_Tile_Preprocessor_Simple:
83
+ def __init__(self, blur_strength=3.0):
84
+ self.blur_strength = blur_strength
85
+
86
+ @classmethod
87
+ def INPUT_TYPES(cls):
88
+ return {
89
+ "required": {
90
+ "image": ("IMAGE",),
91
+ "scale_factor": ("FLOAT", {"default": 2.00, "min": 1.00, "max": 8.00, "step": 0.05}),
92
+ "blur_strength": ("FLOAT", {"default": 1.0, "min": 1.0, "max": 20.0, "step": 0.1}),
93
+ },
94
+ "optional": {}
95
+ }
96
+
97
+ RETURN_TYPES = ("IMAGE",)
98
+ RETURN_NAMES = ("image_output",)
99
+ FUNCTION = 'process_image'
100
+ CATEGORY = 'TTP_TILE'
101
+
102
+ def process_image(self, image, scale_factor, blur_strength):
103
+ ret_images = []
104
+
105
+ for i in image:
106
+ # Convert tensor to PIL for processing
107
+ _canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
108
+
109
+ # Convert PIL image to OpenCV format
110
+ img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
111
+
112
+ # Resize image first if you want blur to apply after resizing
113
+ height, width = img_np.shape[:2]
114
+ new_width = int(width / scale_factor)
115
+ new_height = int(height / scale_factor)
116
+ resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
117
+ resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_LANCZOS4)
118
+
119
+ # Apply Gaussian blur after resizing
120
+ img_np = apply_gaussian_blur(resized_img, ksize=int(blur_strength), sigmaX=blur_strength / 2)
121
+
122
+ # Convert OpenCV back to PIL and then to tensor
123
+ _canvas = Image.fromarray(img_np[:, :, ::-1]) # BGR to RGB
124
+ tensor_img = pil2tensor(_canvas)
125
+ ret_images.append(tensor_img)
126
+
127
+ return (torch.cat(ret_images, dim=0),)
128
+
129
+ class TTPlanet_Tile_Preprocessor_cufoff:
130
+ def __init__(self, blur_strength=3.0, cutoff_frequency=30, filter_strength=1.0):
131
+ self.blur_strength = blur_strength
132
+ self.cutoff_frequency = cutoff_frequency
133
+ self.filter_strength = filter_strength
134
+
135
+ @classmethod
136
+ def INPUT_TYPES(cls):
137
+ return {
138
+ "required": {
139
+ "image": ("IMAGE",),
140
+ "scale_factor": ("FLOAT", {"default": 1.00, "min": 1.00, "max": 8.00, "step": 0.05}),
141
+ "blur_strength": ("FLOAT", {"default": 2.0, "min": 1.0, "max": 10.0, "step": 0.1}),
142
+ "cutoff_frequency": ("INT", {"default": 100, "min": 0, "max": 256, "step": 1}),
143
+ "filter_strength": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1}),
144
+ },
145
+ "optional": {}
146
+ }
147
+
148
+ RETURN_TYPES = ("IMAGE",)
149
+ RETURN_NAMES = ("image_output",)
150
+ FUNCTION = 'process_image'
151
+ CATEGORY = 'TTP_TILE'
152
+
153
+ def process_image(self, image, scale_factor, blur_strength, cutoff_frequency, filter_strength):
154
+ ret_images = []
155
+
156
+ for i in image:
157
+ # Convert tensor to PIL for processing
158
+ _canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB')
159
+ img_np = np.array(_canvas)[:, :, ::-1] # RGB to BGR
160
+
161
+ # Apply low pass filter with new strength parameter
162
+ img_np = apply_low_pass_filter(img_np, cutoff_frequency, filter_strength)
163
+
164
+ # Resize image
165
+ height, width = img_np.shape[:2]
166
+ new_width = int(width / scale_factor)
167
+ new_height = int(height / scale_factor)
168
+ resized_down = cv2.resize(img_np, (new_width, new_height), interpolation=cv2.INTER_AREA)
169
+ resized_img = cv2.resize(resized_down, (width, height), interpolation=cv2.INTER_LANCZOS4)
170
+
171
+ # Apply Gaussian blur
172
+ img_np = apply_gaussian_blur(img_np, ksize=int(blur_strength), sigmaX=blur_strength / 2)
173
+
174
+ # Convert OpenCV back to PIL and then to tensor
175
+ pil_img = Image.fromarray(resized_img[:, :, ::-1]) # BGR to RGB
176
+ tensor_img = pil2tensor(pil_img)
177
+ ret_images.append(tensor_img)
178
+
179
+ return (torch.cat(ret_images, dim=0),)
180
+
181
+ NODE_CLASS_MAPPINGS = {
182
+ "TTPlanet_Tile_Preprocessor_GF": TTPlanet_Tile_Preprocessor_GF,
183
+ "TTPlanet_Tile_Preprocessor_Simple": TTPlanet_Tile_Preprocessor_Simple,
184
+ "TTPlanet_Tile_Preprocessor_cufoff": TTPlanet_Tile_Preprocessor_cufoff
185
+ }
186
+
187
+ NODE_DISPLAY_NAME_MAPPINGS = {
188
+ "TTPlanet_Tile_Preprocessor_GF": "🪐TTPlanet Tile Preprocessor GF",
189
+ "TTPlanet_Tile_Preprocessor_Simple": "🪐TTPlanet Tile Preprocessor Simple",
190
+ "TTPlanet_Tile_Preprocessor_cufoff": "🪐TTPlanet Tile Preprocessor cufoff"
191
+ }