TUMxudashuai
commited on
Commit
·
a927507
1
Parent(s):
5d76d75
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 155.33 +/- 58.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d782928c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d78292950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d782929e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d78292a70>", "_build": "<function ActorCriticPolicy._build at 0x7f9d78292b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f9d78292b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d78292c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9d78292cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d78292d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d78292dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d78292e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9d782e27b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669079263595389328, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObdMb0pCFe6RYZOOt4Zf7N5MMu5KptuuQAAgD8AAIA/vTNYvlSrgz+clzS9z9dbvtHkub7O3ty8AAAAAAAAAABmu24+kYw2vfM+ub28I3q+dZOivsCeN78AAIA/AACAP4C3Hz08ZLI+foqzPcVKKL46UKa8Dly0PQAAAAAAAAAAbRmsPpI09zxd4LM50/0eOJoQHT7r4tW4AACAPwAAgD8AUyS9y6oxP3LOdz25Xiq+LVgbPVXCe70AAAAAAAAAAADKeDyPkju6IqVPOyAQMjcH/X874y5xugAAgD8AAIA/c7NHvlLYrj/5MgC/NFXXvfUdjr6L7K6+AAAAAAAAAACzObw9EHGoP+oDIz/QBqC+kw5AvOPc2j0AAAAAAAAAAGbgPbxdweg+moe0OpZWQb5P/MS8aaEzvQAAAAAAAAAAM9s9vhXLkz8JEge+J209vp0ThL7b2Jw9AAAAAAAAAADNS4k+3TKfP6wEwT6mT8q+7lKvPgMBGjwAAAAAAAAAAB7Sgr4QDRE/5RY3PHJrLr5avyO9oEZnPQAAAAAAAAAALRByPnJYXj/H8Ki9k7SSvg4+RD4m2YK+AAAAAAAAAAAA0sO89sxXuqp7QTsEamK1Zm1TOn4JX7QAAIA/AACAP4CkoL0UEIi64t4OO/6yQTi4WJS64dGquQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDVTGv8/qV0CUhpRSlIwBbJRN6AOMAXSUR0CNO1+6y0KJdX2UKGgGaAloD0MIh/4JLlbcYECUhpRSlGgVTegDaBZHQI1CXXsgMc91fZQoaAZoCWgPQwhNnx1wXaNfQJSGlFKUaBVN6ANoFkdAjVB1ARkEtHV9lChoBmgJaA9DCOHx7V2Dll1AlIaUUpRoFU3oA2gWR0CNU/SflIVedX2UKGgGaAloD0MIGuHtQQiEUUCUhpRSlGgVTegDaBZHQI1YziVB2Oh1fZQoaAZoCWgPQwhwQiECDpk7wJSGlFKUaBVNmQFoFkdAjWdVAZ88cXV9lChoBmgJaA9DCMKJ6NfWGVVAlIaUUpRoFU3oA2gWR0CNahtqHoHLdX2UKGgGaAloD0MI2e2zykycWkCUhpRSlGgVTegDaBZHQI2YMlZ5iVl1fZQoaAZoCWgPQwgs19tmKqxSQJSGlFKUaBVN6ANoFkdAjZtjVQQ+U3V9lChoBmgJaA9DCF+4c2GkQzJAlIaUUpRoFU0UAWgWR0CNnZ5ckdFOdX2UKGgGaAloD0MI98ySALXgYkCUhpRSlGgVTegDaBZHQI2s9BKL8791fZQoaAZoCWgPQwh8RiI0guU+QJSGlFKUaBVN6ANoFkdAjbNq1og3cnV9lChoBmgJaA9DCIaOHVTi7VZAlIaUUpRoFU3oA2gWR0CNxOoVmBe5dX2UKGgGaAloD0MI1Jy8yARQWECUhpRSlGgVTegDaBZHQI3KlUlzEJl1fZQoaAZoCWgPQwjjpZvEIOhJwJSGlFKUaBVNBgFoFkdAjd1HRLK3eHV9lChoBmgJaA9DCMFWCRaH4FJAlIaUUpRoFU3oA2gWR0CN3XTHbRF7dX2UKGgGaAloD0MILSeh9IW7V0CUhpRSlGgVTegDaBZHQI3rE0HhS+B1fZQoaAZoCWgPQwhh/DTuzdlOQJSGlFKUaBVN6ANoFkdAjfIFwT/Q0HV9lChoBmgJaA9DCAMixJWzvFtAlIaUUpRoFU3oA2gWR0CN9d1dxAB1dX2UKGgGaAloD0MI/kemQ6djRkCUhpRSlGgVTegDaBZHQI39NCqp97Z1fZQoaAZoCWgPQwiln3B2a69aQJSGlFKUaBVN6ANoFkdAjg+QTdtVJnV9lChoBmgJaA9DCMsUcxB0TExAlIaUUpRoFU3oA2gWR0COFOh5gPVedX2UKGgGaAloD0MIob36eOiFXkCUhpRSlGgVTegDaBZHQI4krVawD/51fZQoaAZoCWgPQwhlbynni0RTQJSGlFKUaBVN6ANoFkdAjifBE8aGYnV9lChoBmgJaA9DCG6I8ZpXNlRAlIaUUpRoFU3oA2gWR0COWXsVLzwudX2UKGgGaAloD0MIBRiWP9+UV0CUhpRSlGgVTegDaBZHQI5e/Bk7Oml1fZQoaAZoCWgPQwhOQukLITZYQJSGlFKUaBVN6ANoFkdAjmKybYsd1nV9lChoBmgJaA9DCPJfIAiQf2FAlIaUUpRoFU3oA2gWR0COebgH/tIDdX2UKGgGaAloD0MIZcQFoFFhU0CUhpRSlGgVTegDaBZHQI6SvjOs1bd1fZQoaAZoCWgPQwitodRexJVhQJSGlFKUaBVN6ANoFkdAjpiu6mO2iXV9lChoBmgJaA9DCFU01v7OPFpAlIaUUpRoFU3oA2gWR0COrLHwPRRedX2UKGgGaAloD0MIJA9EFmnJYECUhpRSlGgVTegDaBZHQI6s5uIhyKh1fZQoaAZoCWgPQwjXTL7Z5kxYQJSGlFKUaBVN6ANoFkdAjrstzr/sFHV9lChoBmgJaA9DCE2jycUY5l1AlIaUUpRoFU3oA2gWR0COwk9Mbm2cdX2UKGgGaAloD0MI3ZbIBWegXkCUhpRSlGgVTegDaBZHQI7GEYKpkwx1fZQoaAZoCWgPQwh0tKolHVFMQJSGlFKUaBVN6ANoFkdAjs0/yXlbNnV9lChoBmgJaA9DCENXIlD9gVVAlIaUUpRoFU3oA2gWR0CO3ykIomXxdX2UKGgGaAloD0MIzHoxlBOTUECUhpRSlGgVTegDaBZHQI7kAHNX5nF1fZQoaAZoCWgPQwjC+j+HeZZhQJSGlFKUaBVN6ANoFkdAjvKHE2pAEHV9lChoBmgJaA9DCKPp7GTw8GFAlIaUUpRoFU3oA2gWR0CO9Ylgtvn9dX2UKGgGaAloD0MIFqQZi6Y3XkCUhpRSlGgVTegDaBZHQI8lDtG/etV1fZQoaAZoCWgPQwgmNEksKRRYQJSGlFKUaBVN6ANoFkdAjyi/IsAeaXV9lChoBmgJaA9DCJ8FobyPVlZAlIaUUpRoFU3oA2gWR0CPKyliz9jxdX2UKGgGaAloD0MI+imOA6+1YkCUhpRSlGgVTYcDaBZHQI8tYPRRdhR1fZQoaAZoCWgPQwhq2VpfpKRiQJSGlFKUaBVN6ANoFkdAj1ZmKIi1RnV9lChoBmgJaA9DCBKlvcEXgVpAlIaUUpRoFU3oA2gWR0CPXPDdgv12dX2UKGgGaAloD0MI++dpwCDbWUCUhpRSlGgVTegDaBZHQI9yjSy+pOx1fZQoaAZoCWgPQwg1fAvrxgtVQJSGlFKUaBVN6ANoFkdAj3LJpvgm7nV9lChoBmgJaA9DCMKE0axsPlZAlIaUUpRoFU3oA2gWR0CPgkDZlFtsdX2UKGgGaAloD0MItoR80LNDXECUhpRSlGgVTegDaBZHQI+KEUEgW8B1fZQoaAZoCWgPQwjnq+Rjd6tWQJSGlFKUaBVN6ANoFkdAj44d4mkWRHV9lChoBmgJaA9DCLgDdcqjG72/lIaUUpRoFU1hAWgWR0CPlbqMWGh3dX2UKGgGaAloD0MIPx9lxAVDY0CUhpRSlGgVTegDaBZHQI+V6zeGfwt1fZQoaAZoCWgPQwhE4EigwVVXQJSGlFKUaBVN6ANoFkdAj6hLHlwLmnV9lChoBmgJaA9DCFz/rs+cs1lAlIaUUpRoFU3oA2gWR0CPrYl0o0AMdX2UKGgGaAloD0MI7Sqk/KT2YUCUhpRSlGgVTegDaBZHQI+9xvWH1vl1fZQoaAZoCWgPQwjHZkeq7/daQJSGlFKUaBVN6ANoFkdAj8EQ1ivxIHV9lChoBmgJaA9DCG73cp8ct1xAlIaUUpRoFU3oA2gWR0CPywKziS7odX2UKGgGaAloD0MIqfkq+dhd+7+UhpRSlGgVTVkBaBZHQI/M2DHwPRR1fZQoaAZoCWgPQwi/ZU6XxUtcQJSGlFKUaBVN6ANoFkdAj/W+Bg/kenV9lChoBmgJaA9DCN1hE5m56kXAlIaUUpRoFU13AWgWR0CP+P4Kx9ofdX2UKGgGaAloD0MIiC6ob5nTWECUhpRSlGgVTegDaBZHQI/5CcslLOB1fZQoaAZoCWgPQwjekEYFTmJMQJSGlFKUaBVN6ANoFkdAj/urBsQ/YHV9lChoBmgJaA9DCBxeEJGaBhjAlIaUUpRoFU0gAWgWR0CQDTzND+irdX2UKGgGaAloD0MIoKnXLQKnNMCUhpRSlGgVTSEBaBZHQJAVECjk+5h1fZQoaAZoCWgPQwimCkYldSJZQJSGlFKUaBVN6ANoFkdAkBaNQoCuEHV9lChoBmgJaA9DCCuJ7IMs3lVAlIaUUpRoFU3oA2gWR0CQIC6F/QSjdX2UKGgGaAloD0MIvf+PEyZaXUCUhpRSlGgVTegDaBZHQJAgR9srNGF1fZQoaAZoCWgPQwjtDikGSHZeQJSGlFKUaBVN6ANoFkdAkCcX84xUN3V9lChoBmgJaA9DCFLt0/GYHTLAlIaUUpRoFUvuaBZHQJAok3irDIl1fZQoaAZoCWgPQwi9UpYhjuFZQJSGlFKUaBVN6ANoFkdAkCpgJw84gnV9lChoBmgJaA9DCHY3T3XIbFVAlIaUUpRoFU3oA2gWR0CQLDMCcPOIdX2UKGgGaAloD0MI5j+k375gSsCUhpRSlGgVS/poFkdAkDMVtO2y9nV9lChoBmgJaA9DCAHaVrPOxl9AlIaUUpRoFU3oA2gWR0CQOPxi5NGmdX2UKGgGaAloD0MIq+l6omujYUCUhpRSlGgVTegDaBZHQJA7gUVSGah1fZQoaAZoCWgPQwgJ/Uy9bn1JwJSGlFKUaBVNIQFoFkdAkEG9qDbrT3V9lChoBmgJaA9DCA+AuKtXBl9AlIaUUpRoFU3oA2gWR0CQQr8hLXcydX2UKGgGaAloD0MIU1p/SwC3bUCUhpRSlGgVTZUBaBZHQJBIfpUxVQ11fZQoaAZoCWgPQwge3941aABhQJSGlFKUaBVN6ANoFkdAkEitYr8R+XV9lChoBmgJaA9DCIuKOJ1kOltAlIaUUpRoFU3oA2gWR0CQSYAZKnNxdX2UKGgGaAloD0MIBcO5hhlRWkCUhpRSlGgVTegDaBZHQJBKTUpd8iR1fZQoaAZoCWgPQwjuCKcFLy1iQJSGlFKUaBVN6ANoFkdAkEtvPX05EXV9lChoBmgJaA9DCDS/mgOE2GFAlIaUUpRoFU3oA2gWR0CQX5b5uZTidX2UKGgGaAloD0MIhslUwSj4YECUhpRSlGgVTegDaBZHQJBqzpr1uix1fZQoaAZoCWgPQwjiPQeWI/FfQJSGlFKUaBVN6ANoFkdAkHTTbvgFYHV9lChoBmgJaA9DCOfEHtrHAF9AlIaUUpRoFU3oA2gWR0CQfyckt29tdX2UKGgGaAloD0MID2CRXz8aXkCUhpRSlGgVTegDaBZHQJCG2us90Rx1fZQoaAZoCWgPQwhTliGOdcZgQJSGlFKUaBVN6ANoFkdAkIiRKg7HQ3V9lChoBmgJaA9DCFD8GHNXt2BAlIaUUpRoFU3oA2gWR0CQlJZwn6VMdX2UKGgGaAloD0MIOL2L9+MFYECUhpRSlGgVTegDaBZHQJCbP7m+0w91fZQoaAZoCWgPQwidY0D2eqxgQJSGlFKUaBVN6ANoFkdAkJ4FLWZqmHV9lChoBmgJaA9DCNANTdnpB/Y/lIaUUpRoFU0UAWgWR0CQn9OMVDa5dX2UKGgGaAloD0MIIa8Hk+LdXUCUhpRSlGgVTegDaBZHQJClAR02cax1fZQoaAZoCWgPQwguqkVEsc9iQJSGlFKUaBVN6ANoFkdAkKYmhysCDHV9lChoBmgJaA9DCPXabKzEj1tAlIaUUpRoFU3oA2gWR0CQrIWdEsredX2UKGgGaAloD0MIB7R0BduwVECUhpRSlGgVTegDaBZHQJCsuLzf7791fZQoaAZoCWgPQwhsy4CzlANhQJSGlFKUaBVN6ANoFkdAkK20DdP+GXV9lChoBmgJaA9DCOnSvySVwF9AlIaUUpRoFU3oA2gWR0CQrvYfnwG4dX2UKGgGaAloD0MIzuFa7WEJVkCUhpRSlGgVTegDaBZHQJCwqzAvcrR1fZQoaAZoCWgPQwjhB+dTx3ljQJSGlFKUaBVN6ANoFkdAkLIyyQgcLnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03643a991a85bfacf1a3ce3b0ffbb83c71ec1c501ddce1fa68130030afc404ac
|
3 |
+
size 147154
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9d782928c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9d78292950>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9d782929e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9d78292a70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9d78292b00>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9d78292b90>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9d78292c20>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9d78292cb0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9d78292d40>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9d78292dd0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9d78292e60>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9d782e27b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1669079263595389328,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObdMb0pCFe6RYZOOt4Zf7N5MMu5KptuuQAAgD8AAIA/vTNYvlSrgz+clzS9z9dbvtHkub7O3ty8AAAAAAAAAABmu24+kYw2vfM+ub28I3q+dZOivsCeN78AAIA/AACAP4C3Hz08ZLI+foqzPcVKKL46UKa8Dly0PQAAAAAAAAAAbRmsPpI09zxd4LM50/0eOJoQHT7r4tW4AACAPwAAgD8AUyS9y6oxP3LOdz25Xiq+LVgbPVXCe70AAAAAAAAAAADKeDyPkju6IqVPOyAQMjcH/X874y5xugAAgD8AAIA/c7NHvlLYrj/5MgC/NFXXvfUdjr6L7K6+AAAAAAAAAACzObw9EHGoP+oDIz/QBqC+kw5AvOPc2j0AAAAAAAAAAGbgPbxdweg+moe0OpZWQb5P/MS8aaEzvQAAAAAAAAAAM9s9vhXLkz8JEge+J209vp0ThL7b2Jw9AAAAAAAAAADNS4k+3TKfP6wEwT6mT8q+7lKvPgMBGjwAAAAAAAAAAB7Sgr4QDRE/5RY3PHJrLr5avyO9oEZnPQAAAAAAAAAALRByPnJYXj/H8Ki9k7SSvg4+RD4m2YK+AAAAAAAAAAAA0sO89sxXuqp7QTsEamK1Zm1TOn4JX7QAAIA/AACAP4CkoL0UEIi64t4OO/6yQTi4WJS64dGquQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDVTGv8/qV0CUhpRSlIwBbJRN6AOMAXSUR0CNO1+6y0KJdX2UKGgGaAloD0MIh/4JLlbcYECUhpRSlGgVTegDaBZHQI1CXXsgMc91fZQoaAZoCWgPQwhNnx1wXaNfQJSGlFKUaBVN6ANoFkdAjVB1ARkEtHV9lChoBmgJaA9DCOHx7V2Dll1AlIaUUpRoFU3oA2gWR0CNU/SflIVedX2UKGgGaAloD0MIGuHtQQiEUUCUhpRSlGgVTegDaBZHQI1YziVB2Oh1fZQoaAZoCWgPQwhwQiECDpk7wJSGlFKUaBVNmQFoFkdAjWdVAZ88cXV9lChoBmgJaA9DCMKJ6NfWGVVAlIaUUpRoFU3oA2gWR0CNahtqHoHLdX2UKGgGaAloD0MI2e2zykycWkCUhpRSlGgVTegDaBZHQI2YMlZ5iVl1fZQoaAZoCWgPQwgs19tmKqxSQJSGlFKUaBVN6ANoFkdAjZtjVQQ+U3V9lChoBmgJaA9DCF+4c2GkQzJAlIaUUpRoFU0UAWgWR0CNnZ5ckdFOdX2UKGgGaAloD0MI98ySALXgYkCUhpRSlGgVTegDaBZHQI2s9BKL8791fZQoaAZoCWgPQwh8RiI0guU+QJSGlFKUaBVN6ANoFkdAjbNq1og3cnV9lChoBmgJaA9DCIaOHVTi7VZAlIaUUpRoFU3oA2gWR0CNxOoVmBe5dX2UKGgGaAloD0MI1Jy8yARQWECUhpRSlGgVTegDaBZHQI3KlUlzEJl1fZQoaAZoCWgPQwjjpZvEIOhJwJSGlFKUaBVNBgFoFkdAjd1HRLK3eHV9lChoBmgJaA9DCMFWCRaH4FJAlIaUUpRoFU3oA2gWR0CN3XTHbRF7dX2UKGgGaAloD0MILSeh9IW7V0CUhpRSlGgVTegDaBZHQI3rE0HhS+B1fZQoaAZoCWgPQwhh/DTuzdlOQJSGlFKUaBVN6ANoFkdAjfIFwT/Q0HV9lChoBmgJaA9DCAMixJWzvFtAlIaUUpRoFU3oA2gWR0CN9d1dxAB1dX2UKGgGaAloD0MI/kemQ6djRkCUhpRSlGgVTegDaBZHQI39NCqp97Z1fZQoaAZoCWgPQwiln3B2a69aQJSGlFKUaBVN6ANoFkdAjg+QTdtVJnV9lChoBmgJaA9DCMsUcxB0TExAlIaUUpRoFU3oA2gWR0COFOh5gPVedX2UKGgGaAloD0MIob36eOiFXkCUhpRSlGgVTegDaBZHQI4krVawD/51fZQoaAZoCWgPQwhlbynni0RTQJSGlFKUaBVN6ANoFkdAjifBE8aGYnV9lChoBmgJaA9DCG6I8ZpXNlRAlIaUUpRoFU3oA2gWR0COWXsVLzwudX2UKGgGaAloD0MIBRiWP9+UV0CUhpRSlGgVTegDaBZHQI5e/Bk7Oml1fZQoaAZoCWgPQwhOQukLITZYQJSGlFKUaBVN6ANoFkdAjmKybYsd1nV9lChoBmgJaA9DCPJfIAiQf2FAlIaUUpRoFU3oA2gWR0COebgH/tIDdX2UKGgGaAloD0MIZcQFoFFhU0CUhpRSlGgVTegDaBZHQI6SvjOs1bd1fZQoaAZoCWgPQwitodRexJVhQJSGlFKUaBVN6ANoFkdAjpiu6mO2iXV9lChoBmgJaA9DCFU01v7OPFpAlIaUUpRoFU3oA2gWR0COrLHwPRRedX2UKGgGaAloD0MIJA9EFmnJYECUhpRSlGgVTegDaBZHQI6s5uIhyKh1fZQoaAZoCWgPQwjXTL7Z5kxYQJSGlFKUaBVN6ANoFkdAjrstzr/sFHV9lChoBmgJaA9DCE2jycUY5l1AlIaUUpRoFU3oA2gWR0COwk9Mbm2cdX2UKGgGaAloD0MI3ZbIBWegXkCUhpRSlGgVTegDaBZHQI7GEYKpkwx1fZQoaAZoCWgPQwh0tKolHVFMQJSGlFKUaBVN6ANoFkdAjs0/yXlbNnV9lChoBmgJaA9DCENXIlD9gVVAlIaUUpRoFU3oA2gWR0CO3ykIomXxdX2UKGgGaAloD0MIzHoxlBOTUECUhpRSlGgVTegDaBZHQI7kAHNX5nF1fZQoaAZoCWgPQwjC+j+HeZZhQJSGlFKUaBVN6ANoFkdAjvKHE2pAEHV9lChoBmgJaA9DCKPp7GTw8GFAlIaUUpRoFU3oA2gWR0CO9Ylgtvn9dX2UKGgGaAloD0MIFqQZi6Y3XkCUhpRSlGgVTegDaBZHQI8lDtG/etV1fZQoaAZoCWgPQwgmNEksKRRYQJSGlFKUaBVN6ANoFkdAjyi/IsAeaXV9lChoBmgJaA9DCJ8FobyPVlZAlIaUUpRoFU3oA2gWR0CPKyliz9jxdX2UKGgGaAloD0MI+imOA6+1YkCUhpRSlGgVTYcDaBZHQI8tYPRRdhR1fZQoaAZoCWgPQwhq2VpfpKRiQJSGlFKUaBVN6ANoFkdAj1ZmKIi1RnV9lChoBmgJaA9DCBKlvcEXgVpAlIaUUpRoFU3oA2gWR0CPXPDdgv12dX2UKGgGaAloD0MI++dpwCDbWUCUhpRSlGgVTegDaBZHQI9yjSy+pOx1fZQoaAZoCWgPQwg1fAvrxgtVQJSGlFKUaBVN6ANoFkdAj3LJpvgm7nV9lChoBmgJaA9DCMKE0axsPlZAlIaUUpRoFU3oA2gWR0CPgkDZlFtsdX2UKGgGaAloD0MItoR80LNDXECUhpRSlGgVTegDaBZHQI+KEUEgW8B1fZQoaAZoCWgPQwjnq+Rjd6tWQJSGlFKUaBVN6ANoFkdAj44d4mkWRHV9lChoBmgJaA9DCLgDdcqjG72/lIaUUpRoFU1hAWgWR0CPlbqMWGh3dX2UKGgGaAloD0MIPx9lxAVDY0CUhpRSlGgVTegDaBZHQI+V6zeGfwt1fZQoaAZoCWgPQwhE4EigwVVXQJSGlFKUaBVN6ANoFkdAj6hLHlwLmnV9lChoBmgJaA9DCFz/rs+cs1lAlIaUUpRoFU3oA2gWR0CPrYl0o0AMdX2UKGgGaAloD0MI7Sqk/KT2YUCUhpRSlGgVTegDaBZHQI+9xvWH1vl1fZQoaAZoCWgPQwjHZkeq7/daQJSGlFKUaBVN6ANoFkdAj8EQ1ivxIHV9lChoBmgJaA9DCG73cp8ct1xAlIaUUpRoFU3oA2gWR0CPywKziS7odX2UKGgGaAloD0MIqfkq+dhd+7+UhpRSlGgVTVkBaBZHQI/M2DHwPRR1fZQoaAZoCWgPQwi/ZU6XxUtcQJSGlFKUaBVN6ANoFkdAj/W+Bg/kenV9lChoBmgJaA9DCN1hE5m56kXAlIaUUpRoFU13AWgWR0CP+P4Kx9ofdX2UKGgGaAloD0MIiC6ob5nTWECUhpRSlGgVTegDaBZHQI/5CcslLOB1fZQoaAZoCWgPQwjekEYFTmJMQJSGlFKUaBVN6ANoFkdAj/urBsQ/YHV9lChoBmgJaA9DCBxeEJGaBhjAlIaUUpRoFU0gAWgWR0CQDTzND+irdX2UKGgGaAloD0MIoKnXLQKnNMCUhpRSlGgVTSEBaBZHQJAVECjk+5h1fZQoaAZoCWgPQwimCkYldSJZQJSGlFKUaBVN6ANoFkdAkBaNQoCuEHV9lChoBmgJaA9DCCuJ7IMs3lVAlIaUUpRoFU3oA2gWR0CQIC6F/QSjdX2UKGgGaAloD0MIvf+PEyZaXUCUhpRSlGgVTegDaBZHQJAgR9srNGF1fZQoaAZoCWgPQwjtDikGSHZeQJSGlFKUaBVN6ANoFkdAkCcX84xUN3V9lChoBmgJaA9DCFLt0/GYHTLAlIaUUpRoFUvuaBZHQJAok3irDIl1fZQoaAZoCWgPQwi9UpYhjuFZQJSGlFKUaBVN6ANoFkdAkCpgJw84gnV9lChoBmgJaA9DCHY3T3XIbFVAlIaUUpRoFU3oA2gWR0CQLDMCcPOIdX2UKGgGaAloD0MI5j+k375gSsCUhpRSlGgVS/poFkdAkDMVtO2y9nV9lChoBmgJaA9DCAHaVrPOxl9AlIaUUpRoFU3oA2gWR0CQOPxi5NGmdX2UKGgGaAloD0MIq+l6omujYUCUhpRSlGgVTegDaBZHQJA7gUVSGah1fZQoaAZoCWgPQwgJ/Uy9bn1JwJSGlFKUaBVNIQFoFkdAkEG9qDbrT3V9lChoBmgJaA9DCA+AuKtXBl9AlIaUUpRoFU3oA2gWR0CQQr8hLXcydX2UKGgGaAloD0MIU1p/SwC3bUCUhpRSlGgVTZUBaBZHQJBIfpUxVQ11fZQoaAZoCWgPQwge3941aABhQJSGlFKUaBVN6ANoFkdAkEitYr8R+XV9lChoBmgJaA9DCIuKOJ1kOltAlIaUUpRoFU3oA2gWR0CQSYAZKnNxdX2UKGgGaAloD0MIBcO5hhlRWkCUhpRSlGgVTegDaBZHQJBKTUpd8iR1fZQoaAZoCWgPQwjuCKcFLy1iQJSGlFKUaBVN6ANoFkdAkEtvPX05EXV9lChoBmgJaA9DCDS/mgOE2GFAlIaUUpRoFU3oA2gWR0CQX5b5uZTidX2UKGgGaAloD0MIhslUwSj4YECUhpRSlGgVTegDaBZHQJBqzpr1uix1fZQoaAZoCWgPQwjiPQeWI/FfQJSGlFKUaBVN6ANoFkdAkHTTbvgFYHV9lChoBmgJaA9DCOfEHtrHAF9AlIaUUpRoFU3oA2gWR0CQfyckt29tdX2UKGgGaAloD0MID2CRXz8aXkCUhpRSlGgVTegDaBZHQJCG2us90Rx1fZQoaAZoCWgPQwhTliGOdcZgQJSGlFKUaBVN6ANoFkdAkIiRKg7HQ3V9lChoBmgJaA9DCFD8GHNXt2BAlIaUUpRoFU3oA2gWR0CQlJZwn6VMdX2UKGgGaAloD0MIOL2L9+MFYECUhpRSlGgVTegDaBZHQJCbP7m+0w91fZQoaAZoCWgPQwidY0D2eqxgQJSGlFKUaBVN6ANoFkdAkJ4FLWZqmHV9lChoBmgJaA9DCNANTdnpB/Y/lIaUUpRoFU0UAWgWR0CQn9OMVDa5dX2UKGgGaAloD0MIIa8Hk+LdXUCUhpRSlGgVTegDaBZHQJClAR02cax1fZQoaAZoCWgPQwguqkVEsc9iQJSGlFKUaBVN6ANoFkdAkKYmhysCDHV9lChoBmgJaA9DCPXabKzEj1tAlIaUUpRoFU3oA2gWR0CQrIWdEsredX2UKGgGaAloD0MIB7R0BduwVECUhpRSlGgVTegDaBZHQJCsuLzf7791fZQoaAZoCWgPQwhsy4CzlANhQJSGlFKUaBVN6ANoFkdAkK20DdP+GXV9lChoBmgJaA9DCOnSvySVwF9AlIaUUpRoFU3oA2gWR0CQrvYfnwG4dX2UKGgGaAloD0MIzuFa7WEJVkCUhpRSlGgVTegDaBZHQJCwqzAvcrR1fZQoaAZoCWgPQwjhB+dTx3ljQJSGlFKUaBVN6ANoFkdAkLIyyQgcLnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c76bf0d449432dca06776aacf500f5484847f3ecca116fd2aeb6e9a4a6593dee
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6acd6f401321fb5eb56a7647da0f9b5e1aea7f1d9e7a01bd0a6fccf8d0083a7b
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (244 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 155.33258250570648, "std_reward": 58.358773873004836, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-22T01:40:38.025300"}
|