File size: 3,896 Bytes
fc0a115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b0136
fc0a115
c9211cb
e05068a
 
c9211cb
e05068a
b794013
3c51a1a
b794013
e05068a
 
b794013
e05068a
c9211cb
b794013
d60c294
e05068a
d60c294
e05068a
 
 
 
 
 
 
 
82b0136
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
- object-detection

---

# Model Card for detr-doc-table-detection
 
# Model Details
 
detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50).
 
- **Developed by:** Taha Douaji
- **Shared by [Optional]:** Taha Douaji
- **Model type:** Object Detection 
- **Language(s) (NLP):** More information needed
- **License:** More information needed 
- **Parent Model:** [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
- **Resources for more information:**
    - [Model Demo Space](https://huggingface.co/spaces/trevbeers/pdf-table-extraction)
   - [Associated Paper](https://arxiv.org/abs/2005.12872)
 	


# Uses
 

## Direct Use
This model can be used for the task of object detection.
 
## Out-of-Scope Use
 
The model should not be used to intentionally create hostile or alienating environments for people. 
 
# Bias, Risks, and Limitations
 
 
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.



## Recommendations
 
 
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

# Training Details
 
## Training Data
 
The model was trained on ICDAR2019 Table Dataset

 
# Environmental Impact
 
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

 
# Citation

 
**BibTeX:**
 
 
```bibtex
@article{DBLP:journals/corr/abs-2005-12872,
  author    = {Nicolas Carion and
               Francisco Massa and
               Gabriel Synnaeve and
               Nicolas Usunier and
               Alexander Kirillov and
               Sergey Zagoruyko},
  title     = {End-to-End Object Detection with Transformers},
  journal   = {CoRR},
  volume    = {abs/2005.12872},
  year      = {2020},
  url       = {https://arxiv.org/abs/2005.12872},
  archivePrefix = {arXiv},
  eprint    = {2005.12872},
  timestamp = {Thu, 28 May 2020 17:38:09 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

 
# Model Card Authors [optional]
 
Taha Douaji in collaboration with Ezi Ozoani and the Hugging Face team


# Model Card Contact
 
More information needed
 
# How to Get Started with the Model
 
Use the code below to get started with the model.


```python
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image
import requests

image = Image.open("IMAGE_PATH")

processor = DetrImageProcessor.from_pretrained("TahaDouaji/detr-doc-table-detection")
model = DetrForObjectDetection.from_pretrained("TahaDouaji/detr-doc-table-detection")

inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)

# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]

for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
    box = [round(i, 2) for i in box.tolist()]
    print(
            f"Detected {model.config.id2label[label.item()]} with confidence "
            f"{round(score.item(), 3)} at location {box}"
    )
```