--- tags: - object-detection license: apache-2.0 base_model: facebook/detr-resnet-50 --- # Model Card for detr-doc-table-detection # Model Details detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50). - **Developed by:** Taha Douaji - **Shared by [Optional]:** Taha Douaji - **Model type:** Object Detection - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) - **Resources for more information:** - [Model Demo Space](https://huggingface.co/spaces/trevbeers/pdf-table-extraction) - [Associated Paper](https://arxiv.org/abs/2005.12872) # Uses ## Direct Use This model can be used for the task of object detection. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model was trained on ICDAR2019 Table Dataset # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). # Citation **BibTeX:** ```bibtex @article{DBLP:journals/corr/abs-2005-12872, author = {Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko}, title = {End-to-End Object Detection with Transformers}, journal = {CoRR}, volume = {abs/2005.12872}, year = {2020}, url = {https://arxiv.org/abs/2005.12872}, archivePrefix = {arXiv}, eprint = {2005.12872}, timestamp = {Thu, 28 May 2020 17:38:09 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` # Model Card Authors [optional] Taha Douaji in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import DetrImageProcessor, DetrForObjectDetection import torch from PIL import Image import requests image = Image.open("IMAGE_PATH") processor = DetrImageProcessor.from_pretrained("TahaDouaji/detr-doc-table-detection") model = DetrForObjectDetection.from_pretrained("TahaDouaji/detr-doc-table-detection") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs (bounding boxes and class logits) to COCO API # let's only keep detections with score > 0.9 target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] print( f"Detected {model.config.id2label[label.item()]} with confidence " f"{round(score.item(), 3)} at location {box}" ) ```