--- license: mit library_name: peft tags: - generated_from_trainer base_model: TheBloke/zephyr-7B-beta-GPTQ model-index: - name: zephyr-med results: [] --- # zephyr-med This model is a fine-tuned version of [TheBloke/zephyr-7B-beta-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: gptq - bits: 4 - tokenizer: None - dataset: None - group_size: 128 - damp_percent: 0.1 - desc_act: True - sym: True - true_sequential: True - use_cuda_fp16: False - model_seqlen: 4096 - block_name_to_quantize: model.layers - module_name_preceding_first_block: ['model.embed_tokens'] - batch_size: 1 - pad_token_id: None - use_exllama: False - max_input_length: None - exllama_config: {'version': } - cache_block_outputs: True ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 25 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.0 - Transformers 4.36.0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0