--- language: - fa license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small fa - ai_farsi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: es split: test args: es metrics: - name: Wer type: wer value: 10.073919143629183 --- # Whisper Small fa - ai_farsi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2688 - Wer: 10.0739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2607 | 0.2 | 1000 | 0.3368 | 13.1593 | | 0.2811 | 0.4 | 2000 | 0.3133 | 12.1733 | | 0.2166 | 0.6 | 3000 | 0.2933 | 10.9878 | | 0.2647 | 0.8 | 4000 | 0.2776 | 10.5254 | | 0.2402 | 1.0 | 5000 | 0.2688 | 10.0739 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2