--- license: apache-2.0 datasets: - openslr language: - mr metrics: - wer pipeline_tag: automatic-speech-recognition tags: - speech_to_text - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week model-index: - name: XLSR Wav2Vec2 Large 53 Marathi by Sumedh Khodke results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR mr type: openslr metrics: - name: Test WER type: wer value: 12.7 --- # Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [Open SLR64](http://openslr.org/64/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. This data contains only female voices but the model works well for male voices too. Trained on Google Colab Pro on Tesla P100 16GB GPU.
**WER (Word Error Rate) on the Test Set**: 12.70 % ## Usage The model can be used directly without a language model as follows, given that your dataset has Marathi `actual_text` and `path_in_folder` columns: ```python import torch, torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor #Since marathi is not present on Common Voice, script for reading the below dataset can be picked up from the eval script below mr_test_dataset = all_data['test'] processor = Wav2Vec2Processor.from_pretrained("Tejas2000/SpeechRecog") model = Wav2Vec2ForCTC.from_pretrained("Tejas2000/SpeechRecog") resampler = torchaudio.transforms.Resample(48_000, 16_000) #first arg - input sample, second arg - output sample # Preprocessing the datasets. We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path_in_folder"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch mr_test_dataset = mr_test_dataset.map(speech_file_to_array_fn) inputs = processor(mr_test_dataset["speech"][:5], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", mr_test_dataset["actual_text"][:5]) ``` ## Evaluation Evaluated on 10% of the Marathi data on Open SLR-64. ```python import os, re, torch, torchaudio from datasets import Dataset, load_metric import pandas as pd from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor #below is a custom script to be used for reading marathi dataset since its not present on the Common Voice dataset_path = "./OpenSLR-64_Marathi/mr_in_female/" #TODO : include the path of the dataset extracted from http://openslr.org/64/ audio_df = pd.read_csv(os.path.join(dataset_path,'line_index.tsv'),sep='\t',header=None) audio_df.columns = ['path_in_folder','actual_text'] audio_df['path_in_folder'] = audio_df['path_in_folder'].apply(lambda x: dataset_path + x + '.wav') audio_df = audio_df.sample(frac=1, random_state=2020).reset_index(drop=True) #seed number is important for reproducibility of WER score all_data = Dataset.from_pandas(audio_df) all_data = all_data.train_test_split(test_size=0.10,seed=2020) #seed number is important for reproducibility of WER score mr_test_dataset = all_data['test'] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Tejas2000/SpeechRecog") model = Wav2Vec2ForCTC.from_pretrained("Tejas2000/SpeechRecog") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["actual_text"] = re.sub(chars_to_ignore_regex, '', batch["actual_text"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path_in_folder"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch mr_test_dataset = mr_test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = mr_test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["actual_text"]))) ``` ## Training Train-Test ratio was 90:10. The training notebook Colab link [here](https://colab.research.google.com/drive/1wX46fjExcgU5t3AsWhSPTipWg_aMDg2f?usp=sharing). ## Training Config and Summary weights-and-biases run summary [here](https://wandb.ai/wandb/xlsr/runs/3itdhtb8/overview?workspace=user-sumedhkhodke)