mboillet commited on
Commit
6eb4072
1 Parent(s): 66c2871

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -11
README.md CHANGED
@@ -27,33 +27,37 @@ This model performs Handwritten Text Recognition in Latin on medieval documents.
27
  ## Model description
28
 
29
  The model was trained using the PyLaia library on two medieval datasets:
30
- * [Himanis](https://demo.arkindex.org/browse/5000e248-a624-4df1-8679-1b34679817ef?top_level=true&folder=true) (French)
31
- * [HOME-Alcar](https://demo.arkindex.org/browse/46b9b1f4-baeb-4342-a501-e2f15472a276?top_level=true&folder=true) (Latin)
32
 
33
- For training, text-lines were resized with a fixed height of 128 pixels, keeping the original aspect ratio.
34
 
35
- An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the HOME Alcar training set.
36
 
37
  ## Evaluation results
38
 
39
  On HOME-Alcar text lines, the model achieves the following results:
40
 
41
- | set | Language model | CER (%) | WER (%) | N lines |
42
  |:------|:---------------| ----------:| -------:|----------:|
43
  | test | no | 8.35 | 26.15 | 6,932 |
44
  | test | yes | 7.85 | 23.20 | 6,932 |
45
 
46
  ## How to use?
47
 
48
- Please refer to the [documentation](https://atr.pages.teklia.com/pylaia/).
49
 
50
  ## Cite us!
51
 
52
  ```bibtex
53
- @inproceedings{pylaia-lib,
54
- author = "Tarride, Solène and Schneider, Yoann and Generali, Marie and Boillet, Melodie and Abadie, Bastien and Kermorvant, Christopher",
55
- title = "Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library",
56
- booktitle = "Submitted at ICDAR2024",
57
- year = "2024"
 
 
 
 
58
  }
59
  ```
 
27
  ## Model description
28
 
29
  The model was trained using the PyLaia library on two medieval datasets:
30
+ * [Himanis](https://demo.arkindex.org/browse/5000e248-a624-4df1-8679-1b34679817ef?top_level=true&folder=true) (French);
31
+ * [HOME-Alcar](https://demo.arkindex.org/browse/46b9b1f4-baeb-4342-a501-e2f15472a276?top_level=true&folder=true) (Latin).
32
 
33
+ Training images were resized with a fixed height of 128 pixels, keeping the original aspect ratio.
34
 
35
+ An external 6-gram character language model can be used to improve recognition. The language model is trained on the text from the HOME-Alcar training set.
36
 
37
  ## Evaluation results
38
 
39
  On HOME-Alcar text lines, the model achieves the following results:
40
 
41
+ | set | Language model | CER (%) | WER (%) | lines |
42
  |:------|:---------------| ----------:| -------:|----------:|
43
  | test | no | 8.35 | 26.15 | 6,932 |
44
  | test | yes | 7.85 | 23.20 | 6,932 |
45
 
46
  ## How to use?
47
 
48
+ Please refer to the [PyLaia documentation](https://atr.pages.teklia.com/pylaia/usage/prediction/) to use this model.
49
 
50
  ## Cite us!
51
 
52
  ```bibtex
53
+ @inproceedings{pylaia2024,
54
+ author = {Tarride, Solène and Schneider, Yoann and Generali-Lince, Marie and Boillet, Mélodie and Abadie, Bastien and Kermorvant, Christopher},
55
+ title = {{Improving Automatic Text Recognition with Language Models in the PyLaia Open-Source Library}},
56
+ booktitle = {Document Analysis and Recognition - ICDAR 2024},
57
+ year = {2024},
58
+ publisher = {Springer Nature Switzerland},
59
+ address = {Cham},
60
+ pages = {387--404},
61
+ isbn = {978-3-031-70549-6}
62
  }
63
  ```