File size: 2,185 Bytes
6951aa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0279
- Rouge1: 16.4284
- Rouge2: 7.8601
- Rougel: 16.0029
- Rougelsum: 16.0246
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 4.4194 | 1.0 | 1209 | 3.3097 | 14.9867 | 6.4886 | 14.4174 | 14.4646 |
| 3.8132 | 2.0 | 2418 | 3.1602 | 16.1474 | 7.9815 | 15.5342 | 15.6445 |
| 3.5412 | 3.0 | 3627 | 3.0789 | 17.4468 | 8.8014 | 16.9142 | 17.002 |
| 3.3861 | 4.0 | 4836 | 3.0775 | 15.903 | 7.4423 | 15.4008 | 15.3871 |
| 3.2952 | 5.0 | 6045 | 3.0480 | 15.8646 | 7.3936 | 15.3989 | 15.4395 |
| 3.2155 | 6.0 | 7254 | 3.0354 | 16.5887 | 8.0624 | 16.2377 | 16.2562 |
| 3.1896 | 7.0 | 8463 | 3.0273 | 17.1092 | 8.5391 | 16.6507 | 16.7272 |
| 3.1594 | 8.0 | 9672 | 3.0279 | 16.4284 | 7.8601 | 16.0029 | 16.0246 |
### Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|