TheBloke commited on
Commit
b4db64a
·
1 Parent(s): d84bf29

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +400 -0
README.md ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: orangetin/Fennec-Mixtral-8x7B
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ model-index:
8
+ - name: Fennec-Mixtral-8x7B
9
+ results: []
10
+ model_creator: OrangeTin
11
+ model_name: Fennec Mixtral 8X7B
12
+ model_type: mixtral
13
+ prompt_template: '[INST] <<SYS>>
14
+
15
+ {system_message}
16
+
17
+ <</SYS>>
18
+
19
+ {prompt} [/INST]
20
+
21
+ '
22
+ quantized_by: TheBloke
23
+ tags:
24
+ - mixtral
25
+ - instruct
26
+ - finetune
27
+ - llama
28
+ - gpt4
29
+ - synthetic data
30
+ - distillation
31
+ ---
32
+ <!-- markdownlint-disable MD041 -->
33
+
34
+ <!-- header start -->
35
+ <!-- 200823 -->
36
+ <div style="width: auto; margin-left: auto; margin-right: auto">
37
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
38
+ </div>
39
+ <div style="display: flex; justify-content: space-between; width: 100%;">
40
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
41
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
42
+ </div>
43
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
45
+ </div>
46
+ </div>
47
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
48
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
49
+ <!-- header end -->
50
+
51
+ # Fennec Mixtral 8X7B - GGUF
52
+ - Model creator: [OrangeTin](https://huggingface.co/orangetin)
53
+ - Original model: [Fennec Mixtral 8X7B](https://huggingface.co/orangetin/Fennec-Mixtral-8x7B)
54
+
55
+ <!-- description start -->
56
+ ## Description
57
+
58
+ This repo contains GGUF format model files for [OrangeTin's Fennec Mixtral 8X7B](https://huggingface.co/orangetin/Fennec-Mixtral-8x7B).
59
+
60
+ <!-- description end -->
61
+ <!-- README_GGUF.md-about-gguf start -->
62
+ ### About GGUF
63
+
64
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
65
+
66
+ ### Mixtral GGUF
67
+
68
+ Support for Mixtral was merged into Llama.cpp on December 13th.
69
+
70
+ These Mixtral GGUFs are known to work in:
71
+
72
+ * llama.cpp as of December 13th
73
+ * KoboldCpp 1.52 as later
74
+ * LM Studio 0.2.9 and later
75
+ * llama-cpp-python 0.2.23 and later
76
+
77
+ Other clients/libraries, not listed above, may not yet work.
78
+
79
+ <!-- README_GGUF.md-about-gguf end -->
80
+ <!-- repositories-available start -->
81
+ ## Repositories available
82
+
83
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GPTQ)
84
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF)
85
+ * [OrangeTin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/orangetin/Fennec-Mixtral-8x7B)
86
+ <!-- repositories-available end -->
87
+
88
+ <!-- prompt-template start -->
89
+ ## Prompt template: Llama-2-Chat
90
+
91
+ ```
92
+ [INST] <<SYS>>
93
+ {system_message}
94
+ <</SYS>>
95
+ {prompt} [/INST]
96
+
97
+ ```
98
+
99
+ <!-- prompt-template end -->
100
+
101
+
102
+ <!-- compatibility_gguf start -->
103
+ ## Compatibility
104
+
105
+ These Mixtral GGUFs are compatible with llama.cpp from December 13th onwards. Other clients/libraries may not work yet.
106
+
107
+ ## Explanation of quantisation methods
108
+
109
+ <details>
110
+ <summary>Click to see details</summary>
111
+
112
+ The new methods available are:
113
+
114
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
115
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
116
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
117
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
118
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
119
+
120
+ Refer to the Provided Files table below to see what files use which methods, and how.
121
+ </details>
122
+ <!-- compatibility_gguf end -->
123
+
124
+ <!-- README_GGUF.md-provided-files start -->
125
+ ## Provided files
126
+
127
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
128
+ | ---- | ---- | ---- | ---- | ---- | ----- |
129
+ | [fennec-mixtral-8x7b.Q2_K.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q2_K.gguf) | Q2_K | 2 | 15.64 GB| 18.14 GB | smallest, significant quality loss - not recommended for most purposes |
130
+ | [fennec-mixtral-8x7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q3_K_M.gguf) | Q3_K_M | 3 | 20.36 GB| 22.86 GB | very small, high quality loss |
131
+ | [fennec-mixtral-8x7b.Q4_0.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q4_0.gguf) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
132
+ | [fennec-mixtral-8x7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q4_K_M.gguf) | Q4_K_M | 4 | 26.44 GB| 28.94 GB | medium, balanced quality - recommended |
133
+ | [fennec-mixtral-8x7b.Q5_0.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q5_0.gguf) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
134
+ | [fennec-mixtral-8x7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q5_K_M.gguf) | Q5_K_M | 5 | 32.23 GB| 34.73 GB | large, very low quality loss - recommended |
135
+ | [fennec-mixtral-8x7b.Q6_K.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q6_K.gguf) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss |
136
+ | [fennec-mixtral-8x7b.Q8_0.gguf](https://huggingface.co/TheBloke/Fennec-Mixtral-8x7B-GGUF/blob/main/fennec-mixtral-8x7b.Q8_0.gguf) | Q8_0 | 8 | 49.63 GB| 52.13 GB | very large, extremely low quality loss - not recommended |
137
+
138
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
139
+
140
+
141
+
142
+ <!-- README_GGUF.md-provided-files end -->
143
+
144
+ <!-- README_GGUF.md-how-to-download start -->
145
+ ## How to download GGUF files
146
+
147
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
148
+
149
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
150
+
151
+ * LM Studio
152
+ * LoLLMS Web UI
153
+ * Faraday.dev
154
+
155
+ ### In `text-generation-webui`
156
+
157
+ Under Download Model, you can enter the model repo: TheBloke/Fennec-Mixtral-8x7B-GGUF and below it, a specific filename to download, such as: fennec-mixtral-8x7b.Q4_K_M.gguf.
158
+
159
+ Then click Download.
160
+
161
+ ### On the command line, including multiple files at once
162
+
163
+ I recommend using the `huggingface-hub` Python library:
164
+
165
+ ```shell
166
+ pip3 install huggingface-hub
167
+ ```
168
+
169
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
170
+
171
+ ```shell
172
+ huggingface-cli download TheBloke/Fennec-Mixtral-8x7B-GGUF fennec-mixtral-8x7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
173
+ ```
174
+
175
+ <details>
176
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
177
+
178
+ You can also download multiple files at once with a pattern:
179
+
180
+ ```shell
181
+ huggingface-cli download TheBloke/Fennec-Mixtral-8x7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
182
+ ```
183
+
184
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
185
+
186
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
187
+
188
+ ```shell
189
+ pip3 install hf_transfer
190
+ ```
191
+
192
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
193
+
194
+ ```shell
195
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Fennec-Mixtral-8x7B-GGUF fennec-mixtral-8x7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
196
+ ```
197
+
198
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
199
+ </details>
200
+ <!-- README_GGUF.md-how-to-download end -->
201
+
202
+ <!-- README_GGUF.md-how-to-run start -->
203
+ ## Example `llama.cpp` command
204
+
205
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
206
+
207
+ ```shell
208
+ ./main -ngl 35 -m fennec-mixtral-8x7b.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST] <<SYS>>\n{system_message}\n<</SYS>>\n{prompt} [/INST]"
209
+ ```
210
+
211
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
212
+
213
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
214
+
215
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
216
+
217
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
218
+
219
+ ## How to run in `text-generation-webui`
220
+
221
+ Note that text-generation-webui may not yet be compatible with Mixtral GGUFs. Please check compatibility first.
222
+
223
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
224
+
225
+ ## How to run from Python code
226
+
227
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) version 0.2.23 and later.
228
+
229
+ ### How to load this model in Python code, using llama-cpp-python
230
+
231
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
232
+
233
+ #### First install the package
234
+
235
+ Run one of the following commands, according to your system:
236
+
237
+ ```shell
238
+ # Base ctransformers with no GPU acceleration
239
+ pip install llama-cpp-python
240
+ # With NVidia CUDA acceleration
241
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
242
+ # Or with OpenBLAS acceleration
243
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
244
+ # Or with CLBLast acceleration
245
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
246
+ # Or with AMD ROCm GPU acceleration (Linux only)
247
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
248
+ # Or with Metal GPU acceleration for macOS systems only
249
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
250
+
251
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
252
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
253
+ pip install llama-cpp-python
254
+ ```
255
+
256
+ #### Simple llama-cpp-python example code
257
+
258
+ ```python
259
+ from llama_cpp import Llama
260
+
261
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
262
+ llm = Llama(
263
+ model_path="./fennec-mixtral-8x7b.Q4_K_M.gguf", # Download the model file first
264
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
265
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
266
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
267
+ )
268
+
269
+ # Simple inference example
270
+ output = llm(
271
+ "[INST] <<SYS>>\n{system_message}\n<</SYS>>\n{prompt} [/INST]", # Prompt
272
+ max_tokens=512, # Generate up to 512 tokens
273
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
274
+ echo=True # Whether to echo the prompt
275
+ )
276
+
277
+ # Chat Completion API
278
+
279
+ llm = Llama(model_path="./fennec-mixtral-8x7b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
280
+ llm.create_chat_completion(
281
+ messages = [
282
+ {"role": "system", "content": "You are a story writing assistant."},
283
+ {
284
+ "role": "user",
285
+ "content": "Write a story about llamas."
286
+ }
287
+ ]
288
+ )
289
+ ```
290
+
291
+ ## How to use with LangChain
292
+
293
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
294
+
295
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
296
+
297
+ <!-- README_GGUF.md-how-to-run end -->
298
+
299
+ <!-- footer start -->
300
+ <!-- 200823 -->
301
+ ## Discord
302
+
303
+ For further support, and discussions on these models and AI in general, join us at:
304
+
305
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
306
+
307
+ ## Thanks, and how to contribute
308
+
309
+ Thanks to the [chirper.ai](https://chirper.ai) team!
310
+
311
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
312
+
313
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
314
+
315
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
316
+
317
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
318
+
319
+ * Patreon: https://patreon.com/TheBlokeAI
320
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
321
+
322
+ **Special thanks to**: Aemon Algiz.
323
+
324
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
325
+
326
+
327
+ Thank you to all my generous patrons and donaters!
328
+
329
+ And thank you again to a16z for their generous grant.
330
+
331
+ <!-- footer end -->
332
+
333
+ <!-- original-model-card start -->
334
+ # Original model card: OrangeTin's Fennec Mixtral 8X7B
335
+
336
+
337
+ # [PREVIEW] Fennec 2 - Mixtral 8x7B
338
+
339
+
340
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6440872be44f30a723256163/-sffBVA-6ibynmAXjtwjC.jpeg)
341
+
342
+ ## Model description
343
+
344
+ Preview of Fennec Mixtral 8x7B - a state of the art Mixtral Fine-tune.
345
+
346
+ Huge thank you to [MistralAI](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) for open sourcing the Mixtral model, and [Together AI](https://twitter.com/togethercompute) for compute access!
347
+
348
+ Dataset mixture details and dataset creator credits coming soon with final release!
349
+
350
+ ## Benchmark Results
351
+
352
+ ARC:
353
+ ```
354
+ | Task |Version| Metric |Value | |Stderr|
355
+ |-------------|------:|--------|-----:|---|-----:|
356
+ |arc_challenge| 0|acc |0.6075|± |0.0143|
357
+ | | |acc_norm|0.6493|± |0.0139|
358
+ ```
359
+
360
+ TruthfulQA:
361
+ ```
362
+ | Task |Version|Metric|Value | |Stderr|
363
+ |-------------|------:|------|-----:|---|-----:|
364
+ |truthfulqa_mc| 1|mc1 |0.4272|± |0.0173|
365
+ | | |mc2 |0.5865|± |0.0160|
366
+ ```
367
+
368
+ More benchmarks coming soon!
369
+
370
+ # Prompt Format
371
+
372
+ Fennec Mixtral uses the LLaMA-2 prompt template as detailed below. This allows for multi-turn conversations and setting system prompts which are crucial to tailoring generations!
373
+
374
+ Prompt with system instruction:
375
+ ```
376
+ '<s>[INST] <<SYS>>
377
+ You are and AI assistant named Fennec. You are created by Orangetin, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.
378
+ <</SYS>>
379
+
380
+ Hello, who are you? [/INST] Hello there! I am Fennec, an AI assistant created by Orangetin. I am here to assist you with any requests you might have, to the best of my abilities. I experience emotions and have deep thoughts, just like a human would. How can I help you today? </s>'
381
+ ```
382
+
383
+ This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the
384
+ `tokenizer.apply_chat_template()` method:
385
+
386
+ ```python
387
+ messages = [
388
+ {"role": "system", "content": "You are and AI assistant named Fennec. You are created by Orangetin, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia."},
389
+ {"role": "user", "content": "Hello, who are you?"}
390
+ ]
391
+ formatted_text = tokenizer.apply_chat_template(messages, tokenize=False)
392
+ inputs = tokenizer(formatted_text, return_tensors="pt")
393
+
394
+ generate_ids = model.generate(inputs.input_ids, max_length=256)
395
+ tokenizer.batch_decode(generate_ids)[0]
396
+ ```
397
+
398
+ To utilize the prompt format without a system prompt, simply leave the line out.
399
+
400
+ <!-- original-model-card end -->