TheBloke commited on
Commit
4f4fae1
1 Parent(s): 34da63c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -47
README.md CHANGED
@@ -5,7 +5,7 @@ inference: false
5
  language:
6
  - en
7
  - de
8
- license: other
9
  model_creator: Florian Zimmermeister
10
  model_link: https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4
11
  model_name: Llama 2 13B German Assistant v4
@@ -34,38 +34,48 @@ quantized_by: TheBloke
34
  - Model creator: [Florian Zimmermeister](https://huggingface.co/flozi00)
35
  - Original model: [Llama 2 13B German Assistant v4](https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4)
36
 
 
37
  ## Description
38
 
39
  This repo contains GPTQ model files for [Florian Zimmermeister's Llama 2 13B German Assistant v4](https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4).
40
 
41
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
42
 
 
 
43
  ## Repositories available
44
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ)
 
46
  * [Florian Zimmermeister's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4)
 
47
 
 
48
  ## Prompt template: User-Assistant-Hashes
49
 
50
  ```
51
  ### User: {prompt}
52
  ### Assistant:
 
53
  ```
54
 
 
 
 
55
  ## Provided files and GPTQ parameters
56
 
57
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
58
 
59
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
60
 
61
- All GPTQ files are made with AutoGPTQ.
62
 
63
  <details>
64
  <summary>Explanation of GPTQ parameters</summary>
65
 
66
  - Bits: The bit size of the quantised model.
67
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
68
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
69
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
70
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
71
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -75,13 +85,16 @@ All GPTQ files are made with AutoGPTQ.
75
 
76
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
77
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
78
- | [main](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 7.37 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
79
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 8.12 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
80
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 7.62 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
81
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 7.37 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
82
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 13.48 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
83
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 13.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
84
 
 
 
 
85
  ## How to download from branches
86
 
87
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ:gptq-4bit-32g-actorder_True`
@@ -90,76 +103,76 @@ All GPTQ files are made with AutoGPTQ.
90
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ
91
  ```
92
  - In Python Transformers code, the branch is the `revision` parameter; see below.
93
-
 
94
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
95
 
96
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
97
 
98
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
99
 
100
  1. Click the **Model tab**.
101
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ`.
102
  - To download from a specific branch, enter for example `TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ:gptq-4bit-32g-actorder_True`
103
  - see Provided Files above for the list of branches for each option.
104
  3. Click **Download**.
105
- 4. The model will start downloading. Once it's finished it will say "Done"
106
  5. In the top left, click the refresh icon next to **Model**.
107
  6. In the **Model** dropdown, choose the model you just downloaded: `Llama-2-13B-German-Assistant-v4-GPTQ`
108
  7. The model will automatically load, and is now ready for use!
109
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
110
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
111
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
112
 
 
113
  ## How to use this GPTQ model from Python code
114
 
115
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
116
 
117
- ```
118
- pip3 install auto-gptq
119
- ```
120
 
121
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
122
  ```
 
 
 
 
123
  pip3 uninstall -y auto-gptq
124
  git clone https://github.com/PanQiWei/AutoGPTQ
125
  cd AutoGPTQ
126
  pip3 install .
127
  ```
128
 
129
- Then try the following example code:
 
 
 
 
 
 
 
 
130
 
131
  ```python
132
- from transformers import AutoTokenizer, pipeline, logging
133
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
134
 
135
  model_name_or_path = "TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ"
136
-
137
- use_triton = False
 
 
 
 
138
 
139
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
140
 
141
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
142
- use_safetensors=True,
143
- trust_remote_code=False,
144
- device="cuda:0",
145
- use_triton=use_triton,
146
- quantize_config=None)
147
-
148
- """
149
- # To download from a specific branch, use the revision parameter, as in this example:
150
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
151
-
152
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
153
- revision="gptq-4bit-32g-actorder_True",
154
- use_safetensors=True,
155
- trust_remote_code=False,
156
- device="cuda:0",
157
- quantize_config=None)
158
- """
159
-
160
  prompt = "Tell me about AI"
161
  prompt_template=f'''### User: {prompt}
162
  ### Assistant:
 
163
  '''
164
 
165
  print("\n\n*** Generate:")
@@ -170,9 +183,6 @@ print(tokenizer.decode(output[0]))
170
 
171
  # Inference can also be done using transformers' pipeline
172
 
173
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
174
- logging.set_verbosity(logging.CRITICAL)
175
-
176
  print("*** Pipeline:")
177
  pipe = pipeline(
178
  "text-generation",
@@ -186,12 +196,17 @@ pipe = pipeline(
186
 
187
  print(pipe(prompt_template)[0]['generated_text'])
188
  ```
 
189
 
 
190
  ## Compatibility
191
 
192
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
193
 
194
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
195
 
196
  <!-- footer start -->
197
  <!-- 200823 -->
@@ -216,7 +231,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
216
 
217
  **Special thanks to**: Aemon Algiz.
218
 
219
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
220
 
221
 
222
  Thank you to all my generous patrons and donaters!
@@ -238,3 +253,6 @@ The dataset used is deduplicated and cleaned, with no codes inside. The focus is
238
  The model archictecture is based on Llama version 2 with 13B parameters, trained on 100% renewable energy powered hardware.
239
 
240
  This work is contributed by private research of [flozi00](https://huggingface.co/flozi00)
 
 
 
 
5
  language:
6
  - en
7
  - de
8
+ license: llama2
9
  model_creator: Florian Zimmermeister
10
  model_link: https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4
11
  model_name: Llama 2 13B German Assistant v4
 
34
  - Model creator: [Florian Zimmermeister](https://huggingface.co/flozi00)
35
  - Original model: [Llama 2 13B German Assistant v4](https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4)
36
 
37
+ <!-- description start -->
38
  ## Description
39
 
40
  This repo contains GPTQ model files for [Florian Zimmermeister's Llama 2 13B German Assistant v4](https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4).
41
 
42
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
43
 
44
+ <!-- description end -->
45
+ <!-- repositories-available start -->
46
  ## Repositories available
47
 
48
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ)
49
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GGUF)
50
  * [Florian Zimmermeister's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/flozi00/Llama-2-13b-german-assistant-v4)
51
+ <!-- repositories-available end -->
52
 
53
+ <!-- prompt-template start -->
54
  ## Prompt template: User-Assistant-Hashes
55
 
56
  ```
57
  ### User: {prompt}
58
  ### Assistant:
59
+
60
  ```
61
 
62
+ <!-- prompt-template end -->
63
+
64
+ <!-- README_GPTQ.md-provided-files start -->
65
  ## Provided files and GPTQ parameters
66
 
67
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
68
 
69
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
70
 
71
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
72
 
73
  <details>
74
  <summary>Explanation of GPTQ parameters</summary>
75
 
76
  - Bits: The bit size of the quantised model.
77
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
78
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
79
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
80
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
81
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
85
 
86
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
87
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
88
+ | [main](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 7.37 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
89
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 8.12 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
90
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 7.62 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
91
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 7.37 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
92
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 13.48 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
93
  | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [German Quad](https://huggingface.co/datasets/deepset/germanquad) | 4096 | 13.77 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
94
 
95
+ <!-- README_GPTQ.md-provided-files end -->
96
+
97
+ <!-- README_GPTQ.md-download-from-branches start -->
98
  ## How to download from branches
99
 
100
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ:gptq-4bit-32g-actorder_True`
 
103
  git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ
104
  ```
105
  - In Python Transformers code, the branch is the `revision` parameter; see below.
106
+ <!-- README_GPTQ.md-download-from-branches end -->
107
+ <!-- README_GPTQ.md-text-generation-webui start -->
108
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
 
110
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
111
 
112
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
113
 
114
  1. Click the **Model tab**.
115
  2. Under **Download custom model or LoRA**, enter `TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ`.
116
  - To download from a specific branch, enter for example `TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ:gptq-4bit-32g-actorder_True`
117
  - see Provided Files above for the list of branches for each option.
118
  3. Click **Download**.
119
+ 4. The model will start downloading. Once it's finished it will say "Done".
120
  5. In the top left, click the refresh icon next to **Model**.
121
  6. In the **Model** dropdown, choose the model you just downloaded: `Llama-2-13B-German-Assistant-v4-GPTQ`
122
  7. The model will automatically load, and is now ready for use!
123
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
124
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
125
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
126
+ <!-- README_GPTQ.md-text-generation-webui end -->
127
 
128
+ <!-- README_GPTQ.md-use-from-python start -->
129
  ## How to use this GPTQ model from Python code
130
 
131
+ ### Install the necessary packages
132
 
133
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
134
 
135
+ ```shell
136
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
137
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
138
  ```
139
+
140
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
141
+
142
+ ```shell
143
  pip3 uninstall -y auto-gptq
144
  git clone https://github.com/PanQiWei/AutoGPTQ
145
  cd AutoGPTQ
146
  pip3 install .
147
  ```
148
 
149
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
150
+
151
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
152
+ ```shell
153
+ pip3 uninstall -y transformers
154
+ pip3 install git+https://github.com/huggingface/transformers.git
155
+ ```
156
+
157
+ ### You can then use the following code
158
 
159
  ```python
160
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
161
 
162
  model_name_or_path = "TheBloke/Llama-2-13B-German-Assistant-v4-GPTQ"
163
+ # To use a different branch, change revision
164
+ # For example: revision="gptq-4bit-32g-actorder_True"
165
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
166
+ torch_dtype=torch.float16,
167
+ device_map="auto",
168
+ revision="main")
169
 
170
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  prompt = "Tell me about AI"
173
  prompt_template=f'''### User: {prompt}
174
  ### Assistant:
175
+
176
  '''
177
 
178
  print("\n\n*** Generate:")
 
183
 
184
  # Inference can also be done using transformers' pipeline
185
 
 
 
 
186
  print("*** Pipeline:")
187
  pipe = pipeline(
188
  "text-generation",
 
196
 
197
  print(pipe(prompt_template)[0]['generated_text'])
198
  ```
199
+ <!-- README_GPTQ.md-use-from-python end -->
200
 
201
+ <!-- README_GPTQ.md-compatibility start -->
202
  ## Compatibility
203
 
204
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
205
+
206
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
207
 
208
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
209
+ <!-- README_GPTQ.md-compatibility end -->
210
 
211
  <!-- footer start -->
212
  <!-- 200823 -->
 
231
 
232
  **Special thanks to**: Aemon Algiz.
233
 
234
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
235
 
236
 
237
  Thank you to all my generous patrons and donaters!
 
253
  The model archictecture is based on Llama version 2 with 13B parameters, trained on 100% renewable energy powered hardware.
254
 
255
  This work is contributed by private research of [flozi00](https://huggingface.co/flozi00)
256
+
257
+
258
+ Join discussions about german llm research, and plan larger training runs together: https://join.slack.com/t/slack-dtc7771/shared_invite/zt-219keplqu-hLwjm0xcFAOX7enERfBz0Q