TheBloke commited on
Commit
34e08ff
1 Parent(s): 295abbb

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -30
README.md CHANGED
@@ -1,13 +1,16 @@
1
  ---
 
2
  inference: false
3
  language:
4
  - en
5
- license: other
6
  model_creator: Meta Llama 2
7
- model_link: https://huggingface.co/meta-llama/Llama-2-70b-hf
8
  model_name: Llama 2 70B
9
  model_type: llama
10
  pipeline_tag: text-generation
 
 
 
11
  quantized_by: TheBloke
12
  tags:
13
  - facebook
@@ -38,34 +41,36 @@ tags:
38
  - Model creator: [Meta Llama 2](https://huggingface.co/meta-llama)
39
  - Original model: [Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf)
40
 
 
41
  ## Description
42
 
43
  This repo contains GGUF format model files for [Meta Llama 2's Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf).
44
 
 
45
  <!-- README_GGUF.md-about-gguf start -->
46
  ### About GGUF
47
 
48
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
49
 
50
- The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
51
 
52
- Here are a list of clients and libraries that are known to support GGUF:
53
- * [llama.cpp](https://github.com/ggerganov/llama.cpp).
54
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
55
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
56
- * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
57
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
58
- * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
59
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
60
- * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
61
 
62
  <!-- README_GGUF.md-about-gguf end -->
63
  <!-- repositories-available start -->
64
  ## Repositories available
65
 
 
66
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-GPTQ)
67
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-70B-GGUF)
68
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Llama-2-70B-GGML)
69
  * [Meta Llama 2's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-70b-hf)
70
  <!-- repositories-available end -->
71
 
@@ -78,12 +83,14 @@ Here are a list of clients and libraries that are known to support GGUF:
78
  ```
79
 
80
  <!-- prompt-template end -->
 
 
81
  <!-- compatibility_gguf start -->
82
  ## Compatibility
83
 
84
- These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
85
 
86
- They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
87
 
88
  ## Explanation of quantisation methods
89
  <details>
@@ -105,14 +112,10 @@ Refer to the Provided Files table below to see what files use which methods, and
105
 
106
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
107
  | ---- | ---- | ---- | ---- | ---- | ----- |
108
- | [llama-2-70b.Q6_K.gguf-split-b](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q6_K.gguf-split-b) | Q6_K | 6 | 19.89 GB| 22.39 GB | very large, extremely low quality loss |
109
  | [llama-2-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
110
  | [llama-2-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
111
  | [llama-2-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
112
  | [llama-2-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
113
- | [llama-2-70b.Q8_0.gguf-split-b](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q8_0.gguf-split-b) | Q8_0 | 8 | 36.59 GB| 39.09 GB | very large, extremely low quality loss - not recommended |
114
- | [llama-2-70b.Q6_K.gguf-split-a](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q6_K.gguf-split-a) | Q6_K | 6 | 36.70 GB| 39.20 GB | very large, extremely low quality loss |
115
- | [llama-2-70b.Q8_0.gguf-split-a](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q8_0.gguf-split-a) | Q8_0 | 8 | 36.70 GB| 39.20 GB | very large, extremely low quality loss - not recommended |
116
  | [llama-2-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
117
  | [llama-2-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
118
  | [llama-2-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
@@ -160,21 +163,75 @@ del llama-2-70b.Q8_0.gguf-split-a llama-2-70b.Q8_0.gguf-split-b
160
  </details>
161
  <!-- README_GGUF.md-provided-files end -->
162
 
163
- <!-- README_GGUF.md-how-to-run start -->
164
- ## Example `llama.cpp` command
 
 
 
 
 
 
 
 
 
 
 
165
 
166
- Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
167
 
168
- For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
169
 
 
 
 
 
 
 
 
 
 
 
170
  ```
171
- ./main -t 10 -ngl 32 -m llama-2-70b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Write a story about llamas"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  ```
173
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
174
 
175
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
176
 
177
- Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
178
 
179
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
180
 
@@ -209,7 +266,7 @@ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
209
  from ctransformers import AutoModelForCausalLM
210
 
211
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
212
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-70B-GGML", model_file="llama-2-70b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
213
 
214
  print(llm("AI is going to"))
215
  ```
@@ -231,10 +288,12 @@ For further support, and discussions on these models and AI in general, join us
231
 
232
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
233
 
234
- ## Thanks, and how to contribute.
235
 
236
  Thanks to the [chirper.ai](https://chirper.ai) team!
237
 
 
 
238
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
239
 
240
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -246,7 +305,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
246
 
247
  **Special thanks to**: Aemon Algiz.
248
 
249
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
250
 
251
 
252
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/meta-llama/Llama-2-70b-hf
3
  inference: false
4
  language:
5
  - en
6
+ license: llama2
7
  model_creator: Meta Llama 2
 
8
  model_name: Llama 2 70B
9
  model_type: llama
10
  pipeline_tag: text-generation
11
+ prompt_template: '{prompt}
12
+
13
+ '
14
  quantized_by: TheBloke
15
  tags:
16
  - facebook
 
41
  - Model creator: [Meta Llama 2](https://huggingface.co/meta-llama)
42
  - Original model: [Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf)
43
 
44
+ <!-- description start -->
45
  ## Description
46
 
47
  This repo contains GGUF format model files for [Meta Llama 2's Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf).
48
 
49
+ <!-- description end -->
50
  <!-- README_GGUF.md-about-gguf start -->
51
  ### About GGUF
52
 
53
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
54
 
55
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
56
 
57
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
58
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
59
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
60
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
61
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
62
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
63
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
64
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
65
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
66
 
67
  <!-- README_GGUF.md-about-gguf end -->
68
  <!-- repositories-available start -->
69
  ## Repositories available
70
 
71
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama-2-70B-AWQ)
72
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-GPTQ)
73
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-70B-GGUF)
 
74
  * [Meta Llama 2's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/meta-llama/Llama-2-70b-hf)
75
  <!-- repositories-available end -->
76
 
 
83
  ```
84
 
85
  <!-- prompt-template end -->
86
+
87
+
88
  <!-- compatibility_gguf start -->
89
  ## Compatibility
90
 
91
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
92
 
93
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
94
 
95
  ## Explanation of quantisation methods
96
  <details>
 
112
 
113
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
114
  | ---- | ---- | ---- | ---- | ---- | ----- |
 
115
  | [llama-2-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
116
  | [llama-2-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
117
  | [llama-2-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
118
  | [llama-2-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
 
 
 
119
  | [llama-2-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
120
  | [llama-2-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
121
  | [llama-2-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Llama-2-70B-GGUF/blob/main/llama-2-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
 
163
  </details>
164
  <!-- README_GGUF.md-provided-files end -->
165
 
166
+ <!-- README_GGUF.md-how-to-download start -->
167
+ ## How to download GGUF files
168
+
169
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
170
+
171
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
172
+ - LM Studio
173
+ - LoLLMS Web UI
174
+ - Faraday.dev
175
+
176
+ ### In `text-generation-webui`
177
+
178
+ Under Download Model, you can enter the model repo: TheBloke/Llama-2-70B-GGUF and below it, a specific filename to download, such as: llama-2-70b.q4_K_M.gguf.
179
 
180
+ Then click Download.
181
 
182
+ ### On the command line, including multiple files at once
183
 
184
+ I recommend using the `huggingface-hub` Python library:
185
+
186
+ ```shell
187
+ pip3 install huggingface-hub>=0.17.1
188
+ ```
189
+
190
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
191
+
192
+ ```shell
193
+ huggingface-cli download TheBloke/Llama-2-70B-GGUF llama-2-70b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
194
  ```
195
+
196
+ <details>
197
+ <summary>More advanced huggingface-cli download usage</summary>
198
+
199
+ You can also download multiple files at once with a pattern:
200
+
201
+ ```shell
202
+ huggingface-cli download TheBloke/Llama-2-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
203
+ ```
204
+
205
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
206
+
207
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
208
+
209
+ ```shell
210
+ pip3 install hf_transfer
211
+ ```
212
+
213
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
214
+
215
+ ```shell
216
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Llama-2-70B-GGUF llama-2-70b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
217
+ ```
218
+
219
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
220
+ </details>
221
+ <!-- README_GGUF.md-how-to-download end -->
222
+
223
+ <!-- README_GGUF.md-how-to-run start -->
224
+ ## Example `llama.cpp` command
225
+
226
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
227
+
228
+ ```shell
229
+ ./main -ngl 32 -m llama-2-70b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
230
  ```
 
231
 
232
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
233
 
234
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
235
 
236
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
237
 
 
266
  from ctransformers import AutoModelForCausalLM
267
 
268
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
269
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-70B-GGUF", model_file="llama-2-70b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
270
 
271
  print(llm("AI is going to"))
272
  ```
 
288
 
289
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
290
 
291
+ ## Thanks, and how to contribute
292
 
293
  Thanks to the [chirper.ai](https://chirper.ai) team!
294
 
295
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
296
+
297
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
298
 
299
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
305
 
306
  **Special thanks to**: Aemon Algiz.
307
 
308
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
309
 
310
 
311
  Thank you to all my generous patrons and donaters!