Initial upload of GGML models.
Browse files- Manticore-13B.ggmlv2.q4_0.bin +3 -0
- Manticore-13B.ggmlv2.q4_1.bin +3 -0
- Manticore-13B.ggmlv2.q5_0.bin +3 -0
- Manticore-13B.ggmlv2.q5_1.bin +3 -0
- Manticore-13B.ggmlv2.q8_0.bin +3 -0
- README.md +114 -0
Manticore-13B.ggmlv2.q4_0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ceb97efc6843ed07b9b56de89bfad248d3f6ae93e48853013325e1d99724183
|
3 |
+
size 8136770688
|
Manticore-13B.ggmlv2.q4_1.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b7cb29c5366679bc7b42f07b428a958e0fc6a1743505e02f295aa16eb488d97
|
3 |
+
size 9763701888
|
Manticore-13B.ggmlv2.q5_0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f205d0d02812a88e2bc6c0e7c132f41a1bb10815128786f0554af417d86eca8b
|
3 |
+
size 8950236288
|
Manticore-13B.ggmlv2.q5_1.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6628f7cd71387fd8b2f3e55036d14dd7d83e4df72f89b8d3100be433b3cff88
|
3 |
+
size 9763701888
|
Manticore-13B.ggmlv2.q8_0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1896b05065e5cf4f1c514424568d7bf4c7327287391276ea013660498b9e63e
|
3 |
+
size 14644495488
|
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- anon8231489123/ShareGPT_Vicuna_unfiltered
|
4 |
+
- ehartford/wizard_vicuna_70k_unfiltered
|
5 |
+
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
|
6 |
+
- QingyiSi/Alpaca-CoT
|
7 |
+
- teknium/GPT4-LLM-Cleaned
|
8 |
+
- teknium/GPTeacher-General-Instruct
|
9 |
+
- metaeval/ScienceQA_text_only
|
10 |
+
- hellaswag
|
11 |
+
- tasksource/mmlu
|
12 |
+
- openai/summarize_from_feedback
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
library_name: transformers
|
16 |
+
pipeline_tag: text-generation
|
17 |
+
---
|
18 |
+
|
19 |
+
# Manticore 13B GGML
|
20 |
+
|
21 |
+
This is GGML format quantised 4bit and 5bit models of [OpenAccess AI Collective's Manticore 13B](https://huggingface.co/openaccess-ai-collective/manticore-13b).
|
22 |
+
|
23 |
+
This repo is the result of quantising to 4-bit, 5-bit and 8-bit GGML for CPU (+CUDA) inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
|
24 |
+
|
25 |
+
## Repositories available
|
26 |
+
|
27 |
+
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/TheBloke/Manticore-13B-GPTQ).
|
28 |
+
* [4-bit, 5-bit 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/TheBloke/Manticore-13B-GGML).
|
29 |
+
* [OpenAccess AI Collective's original float16 HF format repo for GPU inference and further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b).
|
30 |
+
|
31 |
+
## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 12th 2023 - commit b9fd7ee)!
|
32 |
+
|
33 |
+
llama.cpp recently made a breaking change to its quantisation methods.
|
34 |
+
|
35 |
+
I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 12th or later (commit `b9fd7ee` or later) to use them.
|
36 |
+
|
37 |
+
## Provided files
|
38 |
+
| Name | Quant method | Bits | Size | RAM required | Use case |
|
39 |
+
| ---- | ---- | ---- | ---- | ---- | ----- |
|
40 |
+
`manticore-13B.ggmlv2.q4_0.bin` | q4_0 | 4bit | 8.14GB | 10.5GB | 4-bit. |
|
41 |
+
`manticore-13B.ggmlv2.q4_1.bin` | q5_0 | 5bit | 8.95GB | 11.0GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
42 |
+
`manticore-13B.ggmlv2.q5_0.bin` | q5_1 | 5bit | 9.76GB | 12.25GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. |
|
43 |
+
`manticore-13B.ggmlv2.q8_0.bin` | q8_0 | 8bit | 14.6GB | 17GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
|
44 |
+
|
45 |
+
## How to run in `llama.cpp`
|
46 |
+
|
47 |
+
I use the following command line; adjust for your tastes and needs:
|
48 |
+
|
49 |
+
```
|
50 |
+
./main -t 8 -m manticore-13B-.ggmlv2.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: write a story about llamas ### Response:"
|
51 |
+
```
|
52 |
+
|
53 |
+
Change `-t 8` to the number of physical CPU cores you have.
|
54 |
+
|
55 |
+
## How to run in `text-generation-webui`
|
56 |
+
|
57 |
+
GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual.
|
58 |
+
|
59 |
+
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
|
60 |
+
|
61 |
+
# Original Model Card: Manticore 13B - Preview Release (previously Wizard Mega)
|
62 |
+
|
63 |
+
Manticore 13B is a Llama 13B model fine-tuned on the following datasets:
|
64 |
+
- [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) - based on a cleaned and de-suped subset
|
65 |
+
- [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered)
|
66 |
+
- [Wizard-Vicuna](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
|
67 |
+
- [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT)
|
68 |
+
- [GPT4-LLM-Cleaned](https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned)
|
69 |
+
- [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct)
|
70 |
+
- ARC-Easy & ARC-Challenge - instruct augmented for detailed responses
|
71 |
+
- mmlu: instruct augmented for detailed responses subset including
|
72 |
+
- abstract_algebra
|
73 |
+
- conceptual_physics
|
74 |
+
- formal_logic
|
75 |
+
- high_school_physics
|
76 |
+
- logical_fallacies
|
77 |
+
- [hellaswag](https://huggingface.co/datasets/hellaswag) - 5K row subset of instruct augmented for concise responses
|
78 |
+
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses
|
79 |
+
- [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization
|
80 |
+
|
81 |
+
|
82 |
+
# Demo
|
83 |
+
|
84 |
+
Try out the model in HF Spaces. The demo uses a quantized GGML version of the model to quickly return predictions on smaller GPUs (and even CPUs). Quantized GGML may have some minimal loss of model quality.
|
85 |
+
- https://huggingface.co/spaces/openaccess-ai-collective/manticore-ggml
|
86 |
+
|
87 |
+
## Release Notes
|
88 |
+
|
89 |
+
- https://wandb.ai/wing-lian/manticore-13b/runs/nq3u3uoh/workspace
|
90 |
+
|
91 |
+
## Build
|
92 |
+
|
93 |
+
Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB
|
94 |
+
- Preview Release: 1 epoch taking 8 hours.
|
95 |
+
- The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).
|
96 |
+
|
97 |
+
## Bias, Risks, and Limitations
|
98 |
+
Manticore has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
|
99 |
+
Manticore was fine-tuned from the base model LlaMa 13B, please refer to its model card's Limitations Section for relevant information.
|
100 |
+
|
101 |
+
## Examples
|
102 |
+
|
103 |
+
````
|
104 |
+
### Instruction: write Python code that returns the first n numbers of the Fibonacci sequence using memoization.
|
105 |
+
|
106 |
+
### Assistant:
|
107 |
+
````
|
108 |
+
|
109 |
+
```
|
110 |
+
### Instruction: Finish the joke, a mechanic and a car salesman walk into a bar...
|
111 |
+
|
112 |
+
### Assistant:
|
113 |
+
```
|
114 |
+
|