--- base_model: Undi95/Mistral-ClaudeLimaRP-v3-7B inference: false license: apache-2.0 model_creator: Undi model_name: Mistral ClaudeLimaRP v3 7B model_type: mistral prompt_template: "### Instruction:\nCharacter's Persona: bot character description\n\ \nUser's persona: user character description\n \nScenario: what happens in the\ \ story\n\nPlay the role of Character. You must engage in a roleplaying chat with\ \ User below this line. Do not write dialogues and narration for User. Character\ \ should respond with messages of medium length.\n\n### Input:\nUser: {prompt}\n\ \n### Response:\nCharacter: \n" quantized_by: TheBloke tags: - not-for-all-audiences - nsfw ---
TheBlokeAI

Chat & support: TheBloke's Discord server

Want to contribute? TheBloke's Patreon page

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


# Mistral ClaudeLimaRP v3 7B - AWQ - Model creator: [Undi](https://huggingface.co/Undi95) - Original model: [Mistral ClaudeLimaRP v3 7B](https://huggingface.co/Undi95/Mistral-ClaudeLimaRP-v3-7B) ## Description This repo contains AWQ model files for [Undi's Mistral ClaudeLimaRP v3 7B](https://huggingface.co/Undi95/Mistral-ClaudeLimaRP-v3-7B). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mistral-ClaudeLimaRP-v3-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mistral-ClaudeLimaRP-v3-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mistral-ClaudeLimaRP-v3-7B-GGUF) * [Undi's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Undi95/Mistral-ClaudeLimaRP-v3-7B) ## Prompt template: LimaRP-Alpaca ``` ### Instruction: Character's Persona: bot character description User's persona: user character description Scenario: what happens in the story Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length. ### Input: User: {prompt} ### Response: Character: ``` ## Provided files, and AWQ parameters For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Mistral-ClaudeLimaRP-v3-7B-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.15 GB ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Mistral-ClaudeLimaRP-v3-7B-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Mistral-ClaudeLimaRP-v3-7B-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 python -m vllm.entrypoints.api_server --model TheBloke/Mistral-ClaudeLimaRP-v3-7B-AWQ --quantization awq ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''### Instruction: Character's Persona: bot character description User's persona: user character description Scenario: what happens in the story Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length. ### Input: User: {prompt} ### Response: Character: ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/Mistral-ClaudeLimaRP-v3-7B-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Mistral-ClaudeLimaRP-v3-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''### Instruction: Character's Persona: bot character description User's persona: user character description Scenario: what happens in the story Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length. ### Input: User: {prompt} ### Response: Character: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` ## Inference from Python code using AutoAWQ ### Install the AutoAWQ package Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.1 or later. ```shell pip3 install autoawq ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### AutoAWQ example code ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_name_or_path = "TheBloke/Mistral-ClaudeLimaRP-v3-7B-AWQ" # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False) # Load model model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True, trust_remote_code=False, safetensors=True) prompt = "Tell me about AI" prompt_template=f'''### Instruction: Character's Persona: bot character description User's persona: user character description Scenario: what happens in the story Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. Character should respond with messages of medium length. ### Input: User: {prompt} ### Response: Character: ''' print("*** Running model.generate:") token_input = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() # Generate output generation_output = model.generate( token_input, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, max_new_tokens=512 ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("LLM output: ", text_output) """ # Inference should be possible with transformers pipeline as well in future # But currently this is not yet supported by AutoAWQ (correct as of September 25th 2023) from transformers import pipeline print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1 ) print(pipe(prompt_template)[0]['generated_text']) """ ``` ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. # Original model card: Undi's Mistral ClaudeLimaRP v3 7B ## Description This repo contains fp16 files of [Norquinal/Mistral-7B-claude-chat](https://huggingface.co/Norquinal/Mistral-7B-claude-chat) with the LoRA [lemonilia/LimaRP-Mistral-7B-v0.1](https://huggingface.co/lemonilia/LimaRP-Mistral-7B-v0.1) applied at weight "0.75". All credit go to [lemonilia](https://huggingface.co/lemonilia) and [Norquinal](https://huggingface.co/Norquinal) ## Prompt format Same as before. It uses the [extended Alpaca format](https://github.com/tatsu-lab/stanford_alpaca), with `### Input:` immediately preceding user inputs and `### Response:` immediately preceding model outputs. While Alpaca wasn't originally intended for multi-turn responses, in practice this is not a problem; the format follows a pattern already used by other models. ``` ### Instruction: Character's Persona: {bot character description} User's Persona: {user character description} Scenario: {what happens in the story} Play the role of Character. You must engage in a roleplaying chat with User below this line. Do not write dialogues and narration for User. ### Input: User: {utterance} ### Response: Character: {utterance} ### Input User: {utterance} ### Response: Character: {utterance} (etc.) ``` You should: - Replace all text in curly braces (curly braces included) with your own text. - Replace `User` and `Character` with appropriate names. ### Message length control Inspired by the previously named "Roleplay" preset in SillyTavern, with this version of LimaRP it is possible to append a length modifier to the response instruction sequence, like this: ``` ### Input User: {utterance} ### Response: (length = medium) Character: {utterance} ``` This has an immediately noticeable effect on bot responses. The available lengths are: `tiny`, `short`, `medium`, `long`, `huge`, `humongous`, `extreme`, `unlimited`. **The recommended starting length is `medium`**. Keep in mind that the AI may ramble or impersonate the user with very long messages. The length control effect is reproducible, but the messages will not necessarily follow lengths very precisely, rather follow certain ranges on average, as seen in this table with data from tests made with one reply at the beginning of the conversation: ![lengths](https://files.catbox.moe/dy39bt.png) Response length control appears to work well also deep into the conversation. ## Suggested settings You can follow these instruction format settings in SillyTavern. Replace `tiny` with your desired response length: ![settings](https://files.catbox.moe/6lcz0u.png) ## Text generation settings Extensive testing with Mistral has not been performed yet, but suggested starting text generation settings may be: - TFS = 0.90~0.95 - Temperature = 0.70~0.85 - Repetition penalty = 1.08~1.10 - top-k = 0 (disabled) - top-p = 1 (disabled) If you want to support me, you can [here](https://ko-fi.com/undiai).