TheBloke commited on
Commit
5638d67
·
1 Parent(s): cb4366d

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +242 -0
README.md ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - en
5
+ license: other
6
+ model_creator: Gryphe
7
+ model_link: https://huggingface.co/Gryphe/MythoLogic-Mini-7b
8
+ model_name: Mythologic Mini 7B
9
+ model_type: llama
10
+ quantized_by: TheBloke
11
+ ---
12
+
13
+ <!-- header start -->
14
+ <div style="width: 100%;">
15
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
16
+ </div>
17
+ <div style="display: flex; justify-content: space-between; width: 100%;">
18
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
19
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
20
+ </div>
21
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
22
+ <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
23
+ </div>
24
+ </div>
25
+ <!-- header end -->
26
+
27
+ # Mythologic Mini 7B - GPTQ
28
+ - Model creator: [Gryphe](https://huggingface.co/Gryphe)
29
+ - Original model: [Mythologic Mini 7B](https://huggingface.co/Gryphe/MythoLogic-Mini-7b)
30
+
31
+ ## Description
32
+
33
+ This repo contains GPTQ model files for [Gryphe's Mythologic Mini 7B](https://huggingface.co/Gryphe/MythoLogic-Mini-7b).
34
+
35
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
36
+
37
+ ## Repositories available
38
+
39
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ)
40
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GGML)
41
+ * [Gryphe's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Gryphe/MythoLogic-Mini-7b)
42
+
43
+ ## Prompt template: Alpaca
44
+
45
+ ```
46
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
47
+
48
+ ### Instruction: {prompt}
49
+
50
+ ### Response:
51
+ ```
52
+
53
+ ## Provided files
54
+
55
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
56
+
57
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
58
+
59
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
60
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
61
+ | [main](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/main) | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
62
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
63
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
64
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
65
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
66
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
67
+
68
+ ## How to download from branches
69
+
70
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/MythoLogic-Mini-7B-GPTQ:gptq-4bit-32g-actorder_True`
71
+ - With Git, you can clone a branch with:
72
+ ```
73
+ git clone --branch --single-branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/MythoLogic-Mini-7B-GPTQ
74
+ ```
75
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
76
+
77
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
78
+
79
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
80
+
81
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
82
+
83
+ 1. Click the **Model tab**.
84
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/MythoLogic-Mini-7B-GPTQ`.
85
+ - To download from a specific branch, enter for example `TheBloke/MythoLogic-Mini-7B-GPTQ:gptq-4bit-32g-actorder_True`
86
+ - see Provided Files above for the list of branches for each option.
87
+ 3. Click **Download**.
88
+ 4. The model will start downloading. Once it's finished it will say "Done"
89
+ 5. In the top left, click the refresh icon next to **Model**.
90
+ 6. In the **Model** dropdown, choose the model you just downloaded: `MythoLogic-Mini-7B-GPTQ`
91
+ 7. The model will automatically load, and is now ready for use!
92
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
93
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
94
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
95
+
96
+ ## How to use this GPTQ model from Python code
97
+
98
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
99
+
100
+ `GITHUB_ACTIONS=true pip install auto-gptq`
101
+
102
+ Then try the following example code:
103
+
104
+ ```python
105
+ from transformers import AutoTokenizer, pipeline, logging
106
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
107
+
108
+ model_name_or_path = "TheBloke/MythoLogic-Mini-7B-GPTQ"
109
+ model_basename = "gptq_model-4bit-128g"
110
+
111
+ use_triton = False
112
+
113
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
114
+
115
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
116
+ model_basename=model_basename,
117
+ use_safetensors=True,
118
+ trust_remote_code=False,
119
+ device="cuda:0",
120
+ use_triton=use_triton,
121
+ quantize_config=None)
122
+
123
+ """
124
+ To download from a specific branch, use the revision parameter, as in this example:
125
+
126
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
127
+ revision="gptq-4bit-32g-actorder_True",
128
+ model_basename=model_basename,
129
+ use_safetensors=True,
130
+ trust_remote_code=False,
131
+ device="cuda:0",
132
+ quantize_config=None)
133
+ """
134
+
135
+ prompt = "Tell me about AI"
136
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
137
+
138
+ ### Instruction: {prompt}
139
+
140
+ ### Response:
141
+ '''
142
+
143
+ print("\n\n*** Generate:")
144
+
145
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
146
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
147
+ print(tokenizer.decode(output[0]))
148
+
149
+ # Inference can also be done using transformers' pipeline
150
+
151
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
152
+ logging.set_verbosity(logging.CRITICAL)
153
+
154
+ print("*** Pipeline:")
155
+ pipe = pipeline(
156
+ "text-generation",
157
+ model=model,
158
+ tokenizer=tokenizer,
159
+ max_new_tokens=512,
160
+ temperature=0.7,
161
+ top_p=0.95,
162
+ repetition_penalty=1.15
163
+ )
164
+
165
+ print(pipe(prompt_template)[0]['generated_text'])
166
+ ```
167
+
168
+ ## Compatibility
169
+
170
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
171
+
172
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
173
+
174
+ <!-- footer start -->
175
+ ## Discord
176
+
177
+ For further support, and discussions on these models and AI in general, join us at:
178
+
179
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
180
+
181
+ ## Thanks, and how to contribute.
182
+
183
+ Thanks to the [chirper.ai](https://chirper.ai) team!
184
+
185
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
186
+
187
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
188
+
189
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
190
+
191
+ * Patreon: https://patreon.com/TheBlokeAI
192
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
193
+
194
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
195
+
196
+ **Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
197
+
198
+
199
+ Thank you to all my generous patrons and donaters!
200
+
201
+ <!-- footer end -->
202
+
203
+ # Original model card: Gryphe's Mythologic Mini 7B
204
+
205
+ ## Model details
206
+
207
+ MythoLogic-Mini-7b can be considered the little brother in my Mytho series of models: [MythoLogic-13b](https://huggingface.co/Gryphe/MythoLogic-13b) and [MythoBoros-13b](https://huggingface.co/Gryphe/MythoBoros-13b)).
208
+
209
+ Its Llama-2 core is powered by [Nous Hermes-2](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b), which is further augmented by [Stable Beluga](https://huggingface.co/stabilityai/StableBeluga-7B) and a carefully distilled [Kimiko LoRa](https://huggingface.co/nRuaif/Kimiko_7B).
210
+
211
+ Since 7B models tend to be less capable all-rounders, more emphasis was put on improving the roleplaying aspects for this gradient merge, of which various gradients were benchmarked before settling on the configuration shown below.
212
+
213
+ ![](MythoLogic-Mini-7b.png)
214
+
215
+ In technical terms, the Hermes-2 core starts at 90% strength before fading away completely at the 12th layer level, where Stable Beluga (and Kimiko) handle the more intricate linguistic aspects.
216
+
217
+ Quantized models are available from TheBloke: [GGML](https://huggingface.co/TheBloke/MythoLogic-Mini-7b-GGML) - [GPTQ](https://huggingface.co/TheBloke/MythoLogic-Mini-7b-GPTQ) (You're the best!)
218
+
219
+ ## Prompt Format
220
+
221
+ Due to its Hermes-2 core this model works best with Alpaca formatting, so for optimal model performance, use:
222
+ ```
223
+ ### Instruction:
224
+ Your instruction or question here.
225
+ ### Response:
226
+ ```
227
+
228
+ For chat/roleplay conversations, I suggest the following structure instead:
229
+ ```
230
+ You are <AI NAME>, a friendly and supportive AI language model. We discuss all subjects freely and without bias or restrictions.
231
+ I am <YOUR NAME>, the user interacting with you through a chat conversation. Start with greeting me.
232
+
233
+ ### Instruction:
234
+ Write <AI NAME>'s next reply in a chat between <YOUR NAME> and <AI NAME>. Write a single reply only.
235
+
236
+ ### Chat History:
237
+ <AI NAME>: Good day, <YOUR NAME>! How can I assist you today?
238
+ (Etc, etc)
239
+
240
+ ### Response:
241
+ <AI NAME>:
242
+ ```