TheBloke commited on
Commit
475d632
·
1 Parent(s): f998461

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +342 -0
README.md ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/Phind/Phind-CodeLlama-34B-v1
3
+ inference: false
4
+ license: llama2
5
+ model-index:
6
+ - name: Phind-CodeLlama-34B-v1
7
+ results:
8
+ - dataset:
9
+ name: HumanEval
10
+ type: openai_humaneval
11
+ metrics:
12
+ - name: pass@1
13
+ type: pass@1
14
+ value: 67.6%
15
+ verified: false
16
+ task:
17
+ type: text-generation
18
+ model_creator: Phind
19
+ model_name: Phind CodeLlama 34B v1
20
+ model_type: llama
21
+ prompt_template: '{prompt} \n
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ tags:
26
+ - code llama
27
+ ---
28
+
29
+ <!-- header start -->
30
+ <!-- 200823 -->
31
+ <div style="width: auto; margin-left: auto; margin-right: auto">
32
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
33
+ </div>
34
+ <div style="display: flex; justify-content: space-between; width: 100%;">
35
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
36
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
37
+ </div>
38
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
40
+ </div>
41
+ </div>
42
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
43
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
44
+ <!-- header end -->
45
+
46
+ # Phind CodeLlama 34B v1 - AWQ
47
+ - Model creator: [Phind](https://huggingface.co/Phind)
48
+ - Original model: [Phind CodeLlama 34B v1](https://huggingface.co/Phind/Phind-CodeLlama-34B-v1)
49
+
50
+ <!-- description start -->
51
+ ## Description
52
+
53
+ This repo contains AWQ model files for [Phind's Phind CodeLlama 34B v1](https://huggingface.co/Phind/Phind-CodeLlama-34B-v1).
54
+
55
+
56
+ ### About AWQ
57
+
58
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
59
+
60
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
61
+ <!-- description end -->
62
+ <!-- repositories-available start -->
63
+ ## Repositories available
64
+
65
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-AWQ)
66
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GPTQ)
67
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF)
68
+ * [Phind's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Phind/Phind-CodeLlama-34B-v1)
69
+ <!-- repositories-available end -->
70
+
71
+ <!-- prompt-template start -->
72
+ ## Prompt template: Plain-with-newline
73
+
74
+ ```
75
+ {prompt} \n
76
+
77
+ ```
78
+
79
+ <!-- prompt-template end -->
80
+
81
+
82
+ <!-- README_AWQ.md-provided-files start -->
83
+ ## Provided files and AWQ parameters
84
+
85
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
86
+
87
+ Models are released as sharded safetensors files.
88
+
89
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
90
+ | ------ | ---- | -- | ----------- | ------- | ---- |
91
+ | [main](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-AWQ/tree/main) | 4 | 128 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 4096 | 18.31 GB
92
+
93
+ <!-- README_AWQ.md-provided-files end -->
94
+
95
+ <!-- README_AWQ.md-use-from-vllm start -->
96
+ ## Serving this model from vLLM
97
+
98
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
99
+
100
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
101
+
102
+ ```shell
103
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/Phind-CodeLlama-34B-v1-AWQ --quantization awq
104
+ ```
105
+
106
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
107
+
108
+ ```python
109
+ from vllm import LLM, SamplingParams
110
+
111
+ prompts = [
112
+ "Hello, my name is",
113
+ "The president of the United States is",
114
+ "The capital of France is",
115
+ "The future of AI is",
116
+ ]
117
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
118
+
119
+ llm = LLM(model="TheBloke/Phind-CodeLlama-34B-v1-AWQ", quantization="awq")
120
+
121
+ outputs = llm.generate(prompts, sampling_params)
122
+
123
+ # Print the outputs.
124
+ for output in outputs:
125
+ prompt = output.prompt
126
+ generated_text = output.outputs[0].text
127
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
128
+ ```
129
+ <!-- README_AWQ.md-use-from-vllm start -->
130
+
131
+ <!-- README_AWQ.md-use-from-python start -->
132
+ ## How to use this AWQ model from Python code
133
+
134
+ ### Install the necessary packages
135
+
136
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
137
+
138
+ ```shell
139
+ pip3 install autoawq
140
+ ```
141
+
142
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
143
+
144
+ ```shell
145
+ pip3 uninstall -y autoawq
146
+ git clone https://github.com/casper-hansen/AutoAWQ
147
+ cd AutoAWQ
148
+ pip3 install .
149
+ ```
150
+
151
+ ### You can then try the following example code
152
+
153
+ ```python
154
+ from awq import AutoAWQForCausalLM
155
+ from transformers import AutoTokenizer
156
+
157
+ model_name_or_path = "TheBloke/Phind-CodeLlama-34B-v1-AWQ"
158
+
159
+ # Load model
160
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
161
+ trust_remote_code=False, safetensors=True)
162
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
163
+
164
+ prompt = "Tell me about AI"
165
+ prompt_template=f'''{prompt} \n
166
+
167
+ '''
168
+
169
+ print("\n\n*** Generate:")
170
+
171
+ tokens = tokenizer(
172
+ prompt_template,
173
+ return_tensors='pt'
174
+ ).input_ids.cuda()
175
+
176
+ # Generate output
177
+ generation_output = model.generate(
178
+ tokens,
179
+ do_sample=True,
180
+ temperature=0.7,
181
+ top_p=0.95,
182
+ top_k=40,
183
+ max_new_tokens=512
184
+ )
185
+
186
+ print("Output: ", tokenizer.decode(generation_output[0]))
187
+
188
+ # Inference can also be done using transformers' pipeline
189
+ from transformers import pipeline
190
+
191
+ print("*** Pipeline:")
192
+ pipe = pipeline(
193
+ "text-generation",
194
+ model=model,
195
+ tokenizer=tokenizer,
196
+ max_new_tokens=512,
197
+ do_sample=True,
198
+ temperature=0.7,
199
+ top_p=0.95,
200
+ top_k=40,
201
+ repetition_penalty=1.1
202
+ )
203
+
204
+ print(pipe(prompt_template)[0]['generated_text'])
205
+ ```
206
+ <!-- README_AWQ.md-use-from-python end -->
207
+
208
+ <!-- README_AWQ.md-compatibility start -->
209
+ ## Compatibility
210
+
211
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
212
+
213
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
214
+ <!-- README_AWQ.md-compatibility end -->
215
+
216
+ <!-- footer start -->
217
+ <!-- 200823 -->
218
+ ## Discord
219
+
220
+ For further support, and discussions on these models and AI in general, join us at:
221
+
222
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
223
+
224
+ ## Thanks, and how to contribute
225
+
226
+ Thanks to the [chirper.ai](https://chirper.ai) team!
227
+
228
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
229
+
230
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
231
+
232
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
233
+
234
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
235
+
236
+ * Patreon: https://patreon.com/TheBlokeAI
237
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
238
+
239
+ **Special thanks to**: Aemon Algiz.
240
+
241
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
242
+
243
+
244
+ Thank you to all my generous patrons and donaters!
245
+
246
+ And thank you again to a16z for their generous grant.
247
+
248
+ <!-- footer end -->
249
+
250
+ # Original model card: Phind's Phind CodeLlama 34B v1
251
+
252
+
253
+ # NOTE: We've now launched **Phind-CodeLlama-34B-v2**, which acheives **73.8% pass@1** on HumanEval. It is instruction-tuned and much easier to use than this v1 model.
254
+ # Check out Phind-CodeLlama-34B-v2 [here](https://huggingface.co/Phind/Phind-CodeLlama-34B-v2).
255
+
256
+ ## **Phind-CodeLlama-34B-v1**
257
+ We've fine-tuned CodeLlama-34B and CodeLlama-34B-Python on an internal Phind dataset that achieve 67.6% and 69.5% pass@1 on HumanEval, respectively. GPT-4 achieves 67%. We've applied OpenAI's decontamination methodology to our dataset to ensure result validity.
258
+
259
+ More details can be found on our [blog post](https://www.phind.com/blog/code-llama-beats-gpt4).
260
+
261
+ ## Model Details
262
+ This model is fine-tuned from CodeLlama-34B and achieves 67.6% pass@1 on HumanEval.
263
+
264
+ ## Dataset Details
265
+ We fined-tuned on a proprietary dataset of ~80k high quality programming problems and solutions. This dataset consists of instruction-answer pairs instead of code completion examples, making it structurally different from HumanEval. The Phind models were trained for 2 epochs, for a total of ~160k examples shown. LoRA was not used -- both models are a native finetune. We used DeepSpeed ZeRO 3 and Flash Attention 2 to train these models in three hours on 32 A100-80GB GPUs. We used a sequence length of 4096 tokens.
266
+
267
+ ## How to Get Started with the Model
268
+
269
+ Make sure to install Transformers from the main git branch:
270
+
271
+ ```bash
272
+ pip install git+https://github.com/huggingface/transformers.git
273
+ ```
274
+
275
+ ## How to Prompt the Model
276
+ **Please note that this model is somewhat instruction-tuned, but not chat-tuned.**
277
+
278
+ Do not try to use the Llama chat markup with this model. Instead, simply tell it what you want and add "\n: " at the end of your task.
279
+
280
+ For example:
281
+
282
+ ```
283
+ Write me a linked list implementation: \n
284
+ ```
285
+
286
+ ## How to reproduce HumanEval Results
287
+
288
+ To reproduce our results:
289
+
290
+ ```python
291
+
292
+ from transformers import AutoTokenizer, LlamaForCausalLM
293
+ from human_eval.data import write_jsonl, read_problems
294
+ from tqdm import tqdm
295
+
296
+ # initialize the model
297
+
298
+ model_path = "Phind/Phind-CodeLlama-34B-v1"
299
+ model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto")
300
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
301
+
302
+ # HumanEval helper
303
+
304
+ def generate_one_completion(prompt: str):
305
+ tokenizer.pad_token = tokenizer.eos_token
306
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
307
+
308
+ # Generate
309
+ generate_ids = model.generate(inputs.input_ids.to("cuda"), max_new_tokens=256, do_sample=True, top_p=0.75, top_k=40, temperature=0.1)
310
+ completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
311
+ completion = completion.replace(prompt, "").split("\n\n\n")[0]
312
+
313
+ return completion
314
+
315
+ # perform HumanEval
316
+ problems = read_problems()
317
+
318
+ num_samples_per_task = 1
319
+ samples = [
320
+ dict(task_id=task_id, completion=generate_one_completion(problems[task_id]["prompt"]))
321
+ for task_id in tqdm(problems)
322
+ for _ in range(num_samples_per_task)
323
+ ]
324
+ write_jsonl("samples.jsonl", samples)
325
+
326
+ # run `evaluate_functional_correctness samples.jsonl` in your HumanEval code sandbox
327
+ ```
328
+
329
+ ## Bias, Risks, and Limitations
330
+
331
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
332
+ This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.
333
+
334
+
335
+ ## Training details
336
+
337
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
338
+
339
+ - **Hardware Type:** 32x A100-80GB
340
+ - **Hours used:** 90 GPU-hours
341
+ - **Cloud Provider:** AWS
342
+ - **Compute Region:** us-east-1