TheBloke commited on
Commit
43e2a69
1 Parent(s): 88dcfcb

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +142 -35
README.md CHANGED
@@ -1,16 +1,21 @@
1
  ---
2
- license: other
3
- inference: false
4
  datasets:
5
  - gozfarb/ShareGPT_Vicuna_unfiltered
 
 
 
 
 
 
6
  ---
 
7
  <!-- header start -->
8
  <div style="width: 100%;">
9
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
10
  </div>
11
  <div style="display: flex; justify-content: space-between; width: 100%;">
12
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
13
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
14
  </div>
15
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
16
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -20,59 +25,157 @@ datasets:
20
 
21
  # VicUnlocked-30B-LoRA GPTQ
22
 
23
- This repo contains a GPTQ format quantised 4bit model for [Neko Institute of Science's VicUnLocked 30B LoRA](https://huggingface.co/Neko-Institute-of-Science/VicUnLocked-30b-LoRA).
24
 
25
- The files in this repo are the result of merging the above LoRA with the original LLaMA 30B, then quantising to 4bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
 
 
26
 
27
  ## Repositories available
28
 
29
- * [4-bit, 5-bit and 8-bit GGML models for CPU (+CUDA) inference](https://huggingface.co/TheBloke/VicUnlocked-30B-LoRA-GGML).
30
- * [4-bit GPTQ model for GPU inference](https://huggingface.co/TheBloke/VicUnlocked-30B-LoRA-GPTQ).
31
- * [float16 HF format model for GPU inference and further conversions](https://huggingface.co/TheBloke/VicUnlocked-30B-LoRA-HF).
 
 
 
 
 
32
 
33
- ## How to easily download and use this model in text-generation-webui
34
 
35
- Open the text-generation-webui UI as normal.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  1. Click the **Model tab**.
38
  2. Under **Download custom model or LoRA**, enter `TheBloke/VicUnlocked-30B-LoRA-GPTQ`.
 
 
39
  3. Click **Download**.
40
- 4. Wait until it says it's finished downloading.
41
- 5. Click the **Refresh** icon next to **Model** in the top left.
42
- 6. In the **Model drop-down**: choose the model you just downloaded, `VicUnlocked-30B-LoRA-GPTQ`.
43
- 7. If you see an error in the bottom right, ignore it - it's temporary.
44
- 8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = None`, `model_type = Llama`
45
- 9. Click **Save settings for this model** in the top right.
46
- 10. Click **Reload the Model** in the top right.
47
- 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
48
 
49
- ## Provided files
50
 
51
- **Compatible file - VicUnlocked-30B-LoRA-GPTQ-4bit.act-order.safetensors**
52
 
53
- In the `main` branch - the default one - you will find `VicUnlocked-30B-LoRA-GPTQ-4bit.act-order.safetensors`
54
 
55
- This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility
56
 
57
- It was created without groupsize so as to minimise VRAM requirements. It is created with the `--act-order` parameter to improve inference quality.
 
 
58
 
59
- * `VicUnlocked-30B-LoRA-GPTQ-4bit-128g.compat.no-act-order.safetensors`
60
- * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
61
- * Works with AutoGPTQ.
62
- * Works with text-generation-webui one-click-installers
63
- * Parameters: Groupsize = None. act-order.
64
- * Command used to create the GPTQ:
65
- ```
66
- llama.py /workspace/vicunlocked-30b/HF wikitext2 --wbits 4 --true-sequential --act-order --save_safetensors /workspace/vicunlocked-30b/gptq/VicUnlocked-30B-GPTQ-4bit.act-order.safetensors
67
- ```
68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  <!-- footer start -->
71
  ## Discord
72
 
73
  For further support, and discussions on these models and AI in general, join us at:
74
 
75
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
76
 
77
  ## Thanks, and how to contribute.
78
 
@@ -87,11 +190,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
87
  * Patreon: https://patreon.com/TheBlokeAI
88
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
89
 
90
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
91
 
92
  Thank you to all my generous patrons and donaters!
 
93
  <!-- footer end -->
94
- # Original model card
 
95
 
96
  # Convert tools
97
  https://github.com/practicaldreamer/vicuna_to_alpaca
 
1
  ---
 
 
2
  datasets:
3
  - gozfarb/ShareGPT_Vicuna_unfiltered
4
+ - Aeala/ShareGPT_Vicuna_unfiltered
5
+ inference: false
6
+ license: other
7
+ model_type: llama
8
+ tags:
9
+ - uncensored
10
  ---
11
+
12
  <!-- header start -->
13
  <div style="width: 100%;">
14
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
15
  </div>
16
  <div style="display: flex; justify-content: space-between; width: 100%;">
17
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
18
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
19
  </div>
20
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
21
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
25
 
26
  # VicUnlocked-30B-LoRA GPTQ
27
 
28
+ These files are GPTQ model files for [VicUnlocked-30B-LoRA](https://huggingface.co/Neko-Institute-of-Science/VicUnLocked-30b-LoRA).
29
 
30
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
31
+
32
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
33
 
34
  ## Repositories available
35
 
36
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/VicUnlocked-30B-LoRA-GPTQ)
37
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/VicUnlocked-30B-LoRA-GGML)
38
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/VicUnlocked-30B-LoRA-HF)
39
+
40
+ ## Prompt template: Alpaca
41
+
42
+ ```
43
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
44
 
45
+ ### Instruction: {prompt}
46
 
47
+ ### Response:
48
+ ```
49
+
50
+ ## Provided files
51
+
52
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
53
+
54
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
55
+
56
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
57
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
58
+ | main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
59
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
60
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
61
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
62
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
63
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
64
+ | gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
65
+ | gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
66
+
67
+ ## How to download from branches
68
+
69
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/VicUnlocked-30B-LoRA-GPTQ:gptq-4bit-32g-actorder_True`
70
+ - With Git, you can clone a branch with:
71
+ ```
72
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/VicUnlocked-30B-LoRA-GPTQ`
73
+ ```
74
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
75
+
76
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
77
+
78
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
79
+
80
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
81
 
82
  1. Click the **Model tab**.
83
  2. Under **Download custom model or LoRA**, enter `TheBloke/VicUnlocked-30B-LoRA-GPTQ`.
84
+ - To download from a specific branch, enter for example `TheBloke/VicUnlocked-30B-LoRA-GPTQ:gptq-4bit-32g-actorder_True`
85
+ - see Provided Files above for the list of branches for each option.
86
  3. Click **Download**.
87
+ 4. The model will start downloading. Once it's finished it will say "Done"
88
+ 5. In the top left, click the refresh icon next to **Model**.
89
+ 6. In the **Model** dropdown, choose the model you just downloaded: `VicUnlocked-30B-LoRA-GPTQ`
90
+ 7. The model will automatically load, and is now ready for use!
91
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
92
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
93
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
94
 
95
+ ## How to use this GPTQ model from Python code
96
 
97
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
98
 
99
+ `GITHUB_ACTIONS=true pip install auto-gptq`
100
 
101
+ Then try the following example code:
102
 
103
+ ```python
104
+ from transformers import AutoTokenizer, pipeline, logging
105
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
106
 
107
+ model_name_or_path = "TheBloke/VicUnlocked-30B-LoRA-GPTQ"
108
+ model_basename = "VicUnlocked-30B-GPTQ-4bit--1g.act.order"
 
 
 
 
 
 
 
109
 
110
+ use_triton = False
111
+
112
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
113
+
114
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
115
+ model_basename=model_basename
116
+ use_safetensors=True,
117
+ trust_remote_code=False,
118
+ device="cuda:0",
119
+ use_triton=use_triton,
120
+ quantize_config=None)
121
+
122
+ """
123
+ To download from a specific branch, use the revision parameter, as in this example:
124
+
125
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
126
+ revision="gptq-4bit-32g-actorder_True",
127
+ model_basename=model_basename,
128
+ use_safetensors=True,
129
+ trust_remote_code=False,
130
+ device="cuda:0",
131
+ quantize_config=None)
132
+ """
133
+
134
+ prompt = "Tell me about AI"
135
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
136
+
137
+ ### Instruction: {prompt}
138
+
139
+ ### Response:
140
+ '''
141
+
142
+ print("\n\n*** Generate:")
143
+
144
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
145
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
146
+ print(tokenizer.decode(output[0]))
147
+
148
+ # Inference can also be done using transformers' pipeline
149
+
150
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
151
+ logging.set_verbosity(logging.CRITICAL)
152
+
153
+ print("*** Pipeline:")
154
+ pipe = pipeline(
155
+ "text-generation",
156
+ model=model,
157
+ tokenizer=tokenizer,
158
+ max_new_tokens=512,
159
+ temperature=0.7,
160
+ top_p=0.95,
161
+ repetition_penalty=1.15
162
+ )
163
+
164
+ print(pipe(prompt_template)[0]['generated_text'])
165
+ ```
166
+
167
+ ## Compatibility
168
+
169
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
170
+
171
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
172
 
173
  <!-- footer start -->
174
  ## Discord
175
 
176
  For further support, and discussions on these models and AI in general, join us at:
177
 
178
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
179
 
180
  ## Thanks, and how to contribute.
181
 
 
190
  * Patreon: https://patreon.com/TheBlokeAI
191
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
192
 
193
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
194
+
195
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
196
 
197
  Thank you to all my generous patrons and donaters!
198
+
199
  <!-- footer end -->
200
+
201
+ # Original model card: VicUnlocked-30B-LoRA
202
 
203
  # Convert tools
204
  https://github.com/practicaldreamer/vicuna_to_alpaca