TheBloke commited on
Commit
de424d0
1 Parent(s): 8a9ce34

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md CHANGED
@@ -1,6 +1,16 @@
1
  ---
2
  inference: false
3
  license: other
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Vigogne Instruct 13B - A French instruction-following LLaMa model GGML
@@ -56,3 +66,45 @@ Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](http
56
  Note: at this time text-generation-webui may not support the new May 19th llama.cpp quantisation methods for q4_0, q4_1 and q8_0 files.
57
 
58
  # Original model card: Vigogne Instruct 13B - A French instruction-following LLaMa model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  inference: false
3
  license: other
4
+ language:
5
+ - fr
6
+ pipeline_tag: text-generation
7
+ library_name: transformers
8
+ tags:
9
+ - alpaca
10
+ - llama
11
+ - LLM
12
+ datasets:
13
+ - tatsu-lab/alpaca
14
  ---
15
 
16
  # Vigogne Instruct 13B - A French instruction-following LLaMa model GGML
 
66
  Note: at this time text-generation-webui may not support the new May 19th llama.cpp quantisation methods for q4_0, q4_1 and q8_0 files.
67
 
68
  # Original model card: Vigogne Instruct 13B - A French instruction-following LLaMa model
69
+
70
+ <p align="center" width="100%">
71
+ <img src="https://huggingface.co/bofenghuang/vigogne-instruct-13b/resolve/main/vigogne_logo.png" alt="Vigogne" style="width: 40%; min-width: 300px; display: block; margin: auto;">
72
+ </p>
73
+
74
+ # Vigogne-instruct-13b: A French Instruction-following LLaMA Model
75
+
76
+ Vigogne-instruct-13b is a LLaMA-13B model fine-tuned to follow the 🇫🇷 French instructions.
77
+
78
+ For more information, please visit the Github repo: https://github.com/bofenghuang/vigogne
79
+
80
+ **Usage and License Notices**: Same as [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), Vigogne is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes.
81
+
82
+ ## Usage
83
+
84
+ This repo only contains the low-rank adapter. In order to access the complete model, you also need to load the base LLM model and tokenizer.
85
+
86
+ ```python
87
+ from peft import PeftModel
88
+ from transformers import LlamaForCausalLM, LlamaTokenizer
89
+
90
+ base_model_name_or_path = "name/or/path/to/hf/llama/13b/model"
91
+ lora_model_name_or_path = "bofenghuang/vigogne-instruct-13b"
92
+
93
+ tokenizer = LlamaTokenizer.from_pretrained(base_model_name_or_path, padding_side="right", use_fast=False)
94
+ model = LlamaForCausalLM.from_pretrained(
95
+ base_model_name_or_path,
96
+ load_in_8bit=True,
97
+ torch_dtype=torch.float16,
98
+ device_map="auto",
99
+ )
100
+ model = PeftModel.from_pretrained(model, lora_model_name_or_path)
101
+ ```
102
+
103
+ You can infer this model by using the following Google Colab Notebook.
104
+
105
+ <a href="https://colab.research.google.com/github/bofenghuang/vigogne/blob/main/notebooks/infer_instruct.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
106
+
107
+ ## Limitations
108
+
109
+ Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.
110
+