TheBloke commited on
Commit
da431bd
Β·
1 Parent(s): 7c5f3b1

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +310 -0
README.md ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ library_name: transformers
4
+ license: llama2
5
+ metrics:
6
+ - code_eval
7
+ model-index:
8
+ - name: WizardCoder-Python-34B-V1.0
9
+ results:
10
+ - dataset:
11
+ name: HumanEval
12
+ type: openai_humaneval
13
+ metrics:
14
+ - name: pass@1
15
+ type: pass@1
16
+ value: 0.732
17
+ verified: false
18
+ task:
19
+ type: text-generation
20
+ model_creator: WizardLM
21
+ model_link: https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0
22
+ model_name: WizardCoder Python 34B V1.0
23
+ model_type: llama
24
+ quantized_by: TheBloke
25
+ tags:
26
+ - code
27
+ ---
28
+
29
+ <!-- header start -->
30
+ <!-- 200823 -->
31
+ <div style="width: auto; margin-left: auto; margin-right: auto">
32
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
33
+ </div>
34
+ <div style="display: flex; justify-content: space-between; width: 100%;">
35
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
36
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
37
+ </div>
38
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
39
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
40
+ </div>
41
+ </div>
42
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
43
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
44
+ <!-- header end -->
45
+
46
+ # WizardCoder Python 34B V1.0 - GPTQ
47
+ - Model creator: [WizardLM](https://huggingface.co/WizardLM)
48
+ - Original model: [WizardCoder Python 34B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0)
49
+
50
+ ## Description
51
+
52
+ This repo contains GPTQ model files for [WizardLM's WizardCoder Python 34B V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0).
53
+
54
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
55
+
56
+ ## Repositories available
57
+
58
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ)
59
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGUF)
60
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GGML)
61
+ * [WizardLM's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0)
62
+
63
+ ## Prompt template: Alpaca
64
+
65
+ ```
66
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
67
+
68
+ ### Instruction:
69
+ {prompt}
70
+
71
+ ### Response:
72
+ ```
73
+
74
+ ## Provided files and GPTQ parameters
75
+
76
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
77
+
78
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
79
+
80
+ All GPTQ files are made with AutoGPTQ.
81
+
82
+ <details>
83
+ <summary>Explanation of GPTQ parameters</summary>
84
+
85
+ - Bits: The bit size of the quantised model.
86
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
87
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
88
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
89
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
90
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
91
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
92
+
93
+ </details>
94
+
95
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
96
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
97
+ | [main](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 17.69 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
98
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 20.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
99
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 18.98 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
100
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 18.33 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
101
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.54 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
102
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 14.14 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
103
+
104
+ ## How to download from branches
105
+
106
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/WizardCoder-Python-34B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
107
+ - With Git, you can clone a branch with:
108
+ ```
109
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/WizardCoder-Python-34B-V1.0-GPTQ
110
+ ```
111
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
112
+
113
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
114
+
115
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
116
+
117
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
118
+
119
+ 1. Click the **Model tab**.
120
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/WizardCoder-Python-34B-V1.0-GPTQ`.
121
+ - To download from a specific branch, enter for example `TheBloke/WizardCoder-Python-34B-V1.0-GPTQ:gptq-4bit-32g-actorder_True`
122
+ - see Provided Files above for the list of branches for each option.
123
+ 3. Click **Download**.
124
+ 4. The model will start downloading. Once it's finished it will say "Done"
125
+ 5. In the top left, click the refresh icon next to **Model**.
126
+ 6. In the **Model** dropdown, choose the model you just downloaded: `WizardCoder-Python-34B-V1.0-GPTQ`
127
+ 7. The model will automatically load, and is now ready for use!
128
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
129
+ * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
130
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
131
+
132
+ ## How to use this GPTQ model from Python code
133
+
134
+ First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
135
+
136
+ ```
137
+ pip3 install auto-gptq
138
+ ```
139
+
140
+ If you have problems installing AutoGPTQ, please build from source instead:
141
+ ```
142
+ pip3 uninstall -y auto-gptq
143
+ git clone https://github.com/PanQiWei/AutoGPTQ
144
+ cd AutoGPTQ
145
+ pip3 install .
146
+ ```
147
+
148
+ Then try the following example code:
149
+
150
+ ```python
151
+ from transformers import AutoTokenizer, pipeline, logging
152
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
153
+
154
+ model_name_or_path = "TheBloke/WizardCoder-Python-34B-V1.0-GPTQ"
155
+
156
+ use_triton = False
157
+
158
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
159
+
160
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
161
+ use_safetensors=True,
162
+ trust_remote_code=False,
163
+ device="cuda:0",
164
+ use_triton=use_triton,
165
+ quantize_config=None)
166
+
167
+ """
168
+ # To download from a specific branch, use the revision parameter, as in this example:
169
+ # Note that `revision` requires AutoGPTQ 0.3.1 or later!
170
+
171
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
172
+ revision="gptq-4bit-32g-actorder_True",
173
+ use_safetensors=True,
174
+ trust_remote_code=False,
175
+ device="cuda:0",
176
+ quantize_config=None)
177
+ """
178
+
179
+ prompt = "Tell me about AI"
180
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
181
+
182
+ ### Instruction:
183
+ {prompt}
184
+
185
+ ### Response:
186
+ '''
187
+
188
+ print("\n\n*** Generate:")
189
+
190
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
191
+ output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
192
+ print(tokenizer.decode(output[0]))
193
+
194
+ # Inference can also be done using transformers' pipeline
195
+
196
+ # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
197
+ logging.set_verbosity(logging.CRITICAL)
198
+
199
+ print("*** Pipeline:")
200
+ pipe = pipeline(
201
+ "text-generation",
202
+ model=model,
203
+ tokenizer=tokenizer,
204
+ max_new_tokens=512,
205
+ temperature=0.7,
206
+ top_p=0.95,
207
+ repetition_penalty=1.15
208
+ )
209
+
210
+ print(pipe(prompt_template)[0]['generated_text'])
211
+ ```
212
+
213
+ ## Compatibility
214
+
215
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
216
+
217
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
218
+
219
+ <!-- footer start -->
220
+ <!-- 200823 -->
221
+ ## Discord
222
+
223
+ For further support, and discussions on these models and AI in general, join us at:
224
+
225
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
226
+
227
+ ## Thanks, and how to contribute.
228
+
229
+ Thanks to the [chirper.ai](https://chirper.ai) team!
230
+
231
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
232
+
233
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
234
+
235
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
236
+
237
+ * Patreon: https://patreon.com/TheBlokeAI
238
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
239
+
240
+ **Special thanks to**: Aemon Algiz.
241
+
242
+ **Patreon special mentions**: Kacper WikieΕ‚, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11
243
+
244
+
245
+ Thank you to all my generous patrons and donaters!
246
+
247
+ And thank you again to a16z for their generous grant.
248
+
249
+ <!-- footer end -->
250
+
251
+ # Original model card: WizardLM's WizardCoder Python 34B V1.0
252
+
253
+
254
+ <p align="center">
255
+ πŸ€— <a href="https://huggingface.co/WizardLM" target="_blank">HF Repo</a> β€’ 🐦 <a href="https://twitter.com/WizardLM_AI" target="_blank">Twitter</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a> <br>
256
+ </p>
257
+ <p align="center">
258
+ πŸ‘‹ Join our <a href="https://discord.gg/VZjjHtWrKs" target="_blank">Discord</a>
259
+ </p>
260
+
261
+ ## News
262
+
263
+ - πŸ”₯πŸ”₯πŸ”₯[2023/08/26] We released **WizardCoder-Python-34B-V1.0** , which achieves the **73.2 pass@1** and surpasses **GPT4 (2023/03/15)**, **ChatGPT-3.5**, and **Claude2** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
264
+ - [2023/06/16] We released **WizardCoder-15B-V1.0** , which achieves the **57.3 pass@1** and surpasses **Claude-Plus (+6.8)**, **Bard (+15.3)** and **InstructCodeT5+ (+22.3)** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
265
+
266
+ ❗Note: There are two HumanEval results of GPT4 and ChatGPT-3.5. The 67.0 and 48.1 are reported by the official GPT4 Report (2023/03/15) of [OpenAI](https://arxiv.org/abs/2303.08774). The 82.0 and 72.5 are tested by ourselves with the latest API (2023/08/26).
267
+
268
+
269
+ | Model | Checkpoint | Paper | HumanEval | MBPP | Demo | License |
270
+ | ----- |------| ---- |------|-------| ----- | ----- |
271
+ | WizardCoder-Python-34B-V1.0 | πŸ€— <a href="" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 73.2 | 61.2 | [Demo](http://47.103.63.15:50085/) | <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama2</a> |
272
+ | WizardCoder-15B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardCoder-15B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2306.08568" target="_blank">[WizardCoder]</a> | 59.8 |50.6 | -- | <a href="https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement" target="_blank">OpenRAIL-M</a> |
273
+
274
+
275
+ - Our **WizardMath-70B-V1.0** model slightly outperforms some closed-source LLMs on the GSM8K, including **ChatGPT 3.5**, **Claude Instant 1** and **PaLM 2 540B**.
276
+ - Our **WizardMath-70B-V1.0** model achieves **81.6 pass@1** on the [GSM8k Benchmarks](https://github.com/openai/grade-school-math), which is **24.8** points higher than the SOTA open-source LLM, and achieves **22.7 pass@1** on the [MATH Benchmarks](https://github.com/hendrycks/math), which is **9.2** points higher than the SOTA open-source LLM.
277
+
278
+ <font size=4>
279
+
280
+ | Model | Checkpoint | Paper | GSM8k | MATH |Online Demo| License|
281
+ | ----- |------| ---- |------|-------| ----- | ----- |
282
+ | WizardMath-70B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-70B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **81.6** | **22.7** |[Demo](http://47.103.63.15:50083/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
283
+ | WizardMath-13B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-13B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **63.9** | **14.0** |[Demo](http://47.103.63.15:50082/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a> |
284
+ | WizardMath-7B-V1.0 | πŸ€— <a href="https://huggingface.co/WizardLM/WizardMath-7B-V1.0" target="_blank">HF Link</a> | πŸ“ƒ <a href="https://arxiv.org/abs/2308.09583" target="_blank">[WizardMath]</a>| **54.9** | **10.7** | [Demo ](http://47.103.63.15:50080/)| <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 </a>|
285
+ </font>
286
+
287
+
288
+ - [08/09/2023] We released **WizardLM-70B-V1.0** model. Here is [Full Model Weight](https://huggingface.co/WizardLM/WizardLM-70B-V1.0).
289
+
290
+ <font size=4>
291
+
292
+
293
+ | <sup>Model</sup> | <sup>Checkpoint</sup> | <sup>Paper</sup> |<sup>MT-Bench</sup> | <sup>AlpacaEval</sup> | <sup>GSM8k</sup> | <sup>HumanEval</sup> | <sup>License</sup>|
294
+ | ----- |------| ---- |------|-------| ----- | ----- | ----- |
295
+ | <sup>**WizardLM-70B-V1.0**</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-70B-V1.0" target="_blank">HF Link</a> </sup>|<sup>πŸ“ƒ**Coming Soon**</sup>| <sup>**7.78**</sup> | <sup>**92.91%**</sup> |<sup>**77.6%**</sup> | <sup> **50.6**</sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
296
+ | <sup>WizardLM-13B-V1.2</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.2" target="_blank">HF Link</a> </sup>| | <sup>7.06</sup> | <sup>89.17%</sup> |<sup>55.3%</sup> | <sup>36.6 </sup>|<sup> <a href="https://ai.meta.com/resources/models-and-libraries/llama-downloads/" target="_blank">Llama 2 License </a></sup> |
297
+ | <sup>WizardLM-13B-V1.1</sup> |<sup> πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.1" target="_blank">HF Link</a> </sup> | | <sup>6.76</sup> |<sup>86.32%</sup> | | <sup>25.0 </sup>| <sup>Non-commercial</sup>|
298
+ | <sup>WizardLM-30B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-30B-V1.0" target="_blank">HF Link</a></sup> | | <sup>7.01</sup> | | | <sup>37.8 </sup>| <sup>Non-commercial</sup> |
299
+ | <sup>WizardLM-13B-V1.0</sup> | <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-13B-V1.0" target="_blank">HF Link</a> </sup> | | <sup>6.35</sup> | <sup>75.31%</sup> | | <sup> 24.0 </sup> | <sup>Non-commercial</sup>|
300
+ | <sup>WizardLM-7B-V1.0 </sup>| <sup>πŸ€— <a href="https://huggingface.co/WizardLM/WizardLM-7B-V1.0" target="_blank">HF Link</a> </sup> |<sup> πŸ“ƒ <a href="https://arxiv.org/abs/2304.12244" target="_blank">[WizardLM]</a> </sup>| | | |<sup>19.1 </sup>|<sup> Non-commercial</sup>|
301
+ </font>
302
+
303
+
304
+ ## Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.
305
+
306
+ πŸ”₯ The following figure shows that our **WizardCoder-Python-34B-V1.0 attains the second position in this benchmark**, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).
307
+
308
+ <p align="center" width="100%">
309
+ <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/compare_sota.png" alt="WizardCoder" style="width: 96%; min-width: 300px; display: block; margin: auto;"></a>
310
+ </p>