TheBloke commited on
Commit
7e15dc4
1 Parent(s): ea25a77

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -2
README.md CHANGED
@@ -34,6 +34,14 @@ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/gger
34
  * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML)
35
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b)
36
 
 
 
 
 
 
 
 
 
37
  ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
38
 
39
  llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
@@ -49,7 +57,6 @@ I have quantised the GGML files in this repo with the latest version. Therefore
49
  | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
50
  | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
51
 
52
-
53
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
54
 
55
  ## How to run in `llama.cpp`
@@ -57,7 +64,7 @@ I have quantised the GGML files in this repo with the latest version. Therefore
57
  I use the following command line; adjust for your tastes and needs:
58
 
59
  ```
60
- ./main -t 10 -ngl 32 -m WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
61
  ```
62
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
63
 
 
34
  * [4-bit, 5-bit, and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGML)
35
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Monero/WizardLM-Uncensored-SuperCOT-StoryTelling-30b)
36
 
37
+ ## Prompt template
38
+
39
+ ```
40
+ Optional instruction ("You are a helpful assistant" etc)
41
+ USER: prompt
42
+ ASSISTANT:
43
+ ```
44
+
45
  ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
46
 
47
  llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
 
57
  | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
58
  | WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
59
 
 
60
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
61
 
62
  ## How to run in `llama.cpp`
 
64
  I use the following command line; adjust for your tastes and needs:
65
 
66
  ```
67
+ ./main -t 10 -ngl 32 -m WizardLM-Uncensored-SuperCOT-Storytelling.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "USER: Write a story about llamas\nASSISTANT:"
68
  ```
69
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
70