TheBloke commited on
Commit
7d6ef4c
·
1 Parent(s): 4f1187d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +412 -0
README.md ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: larryvrh/Yi-34B-200K-Llamafied
3
+ inference: false
4
+ language:
5
+ - zh
6
+ - en
7
+ license: other
8
+ license_link: LICENSE
9
+ license_name: yi-license
10
+ model_creator: larryvrh
11
+ model_name: Yi 34B 200K Llamafied
12
+ model_type: yi
13
+ prompt_template: '{prompt}
14
+
15
+ '
16
+ quantized_by: TheBloke
17
+ ---
18
+ <!-- markdownlint-disable MD041 -->
19
+
20
+ <!-- header start -->
21
+ <!-- 200823 -->
22
+ <div style="width: auto; margin-left: auto; margin-right: auto">
23
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
24
+ </div>
25
+ <div style="display: flex; justify-content: space-between; width: 100%;">
26
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
27
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
28
+ </div>
29
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
30
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
31
+ </div>
32
+ </div>
33
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
34
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
35
+ <!-- header end -->
36
+
37
+ # Yi 34B 200K Llamafied - AWQ
38
+ - Model creator: [larryvrh](https://huggingface.co/larryvrh)
39
+ - Original model: [Yi 34B 200K Llamafied](https://huggingface.co/larryvrh/Yi-34B-200K-Llamafied)
40
+
41
+ <!-- description start -->
42
+ ## Description
43
+
44
+ This repo contains AWQ model files for [larryvrh's Yi 34B 200K Llamafied](https://huggingface.co/larryvrh/Yi-34B-200K-Llamafied).
45
+
46
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
47
+
48
+
49
+ ### About AWQ
50
+
51
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
52
+
53
+ It is supported by:
54
+
55
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
56
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
57
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
58
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
59
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
60
+
61
+ <!-- description end -->
62
+ <!-- repositories-available start -->
63
+ ## Repositories available
64
+
65
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Yi-34B-200K-Llamafied-AWQ)
66
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Yi-34B-200K-Llamafied-GPTQ)
67
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Yi-34B-200K-Llamafied-GGUF)
68
+ * [larryvrh's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/larryvrh/Yi-34B-200K-Llamafied)
69
+ <!-- repositories-available end -->
70
+
71
+ <!-- prompt-template start -->
72
+ ## Prompt template: None
73
+
74
+ ```
75
+ {prompt}
76
+
77
+ ```
78
+
79
+ <!-- prompt-template end -->
80
+
81
+
82
+ <!-- README_AWQ.md-provided-files start -->
83
+ ## Provided files, and AWQ parameters
84
+
85
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
86
+
87
+ Models are released as sharded safetensors files.
88
+
89
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
90
+ | ------ | ---- | -- | ----------- | ------- | ---- |
91
+ | [main](https://huggingface.co/TheBloke/Yi-34B-200K-Llamafied-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 19.23 GB
92
+
93
+ <!-- README_AWQ.md-provided-files end -->
94
+
95
+ <!-- README_AWQ.md-text-generation-webui start -->
96
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
97
+
98
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
99
+
100
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
101
+
102
+ 1. Click the **Model tab**.
103
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Yi-34B-200K-Llamafied-AWQ`.
104
+ 3. Click **Download**.
105
+ 4. The model will start downloading. Once it's finished it will say "Done".
106
+ 5. In the top left, click the refresh icon next to **Model**.
107
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Yi-34B-200K-Llamafied-AWQ`
108
+ 7. Select **Loader: AutoAWQ**.
109
+ 8. Click Load, and the model will load and is now ready for use.
110
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
111
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
112
+ <!-- README_AWQ.md-text-generation-webui end -->
113
+
114
+ <!-- README_AWQ.md-use-from-vllm start -->
115
+ ## Multi-user inference server: vLLM
116
+
117
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
118
+
119
+ - Please ensure you are using vLLM version 0.2 or later.
120
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
121
+
122
+ For example:
123
+
124
+ ```shell
125
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Yi-34B-200K-Llamafied-AWQ --quantization awq --dtype auto
126
+ ```
127
+
128
+ - When using vLLM from Python code, again set `quantization=awq`.
129
+
130
+ For example:
131
+
132
+ ```python
133
+ from vllm import LLM, SamplingParams
134
+
135
+ prompts = [
136
+ "Tell me about AI",
137
+ "Write a story about llamas",
138
+ "What is 291 - 150?",
139
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
140
+ ]
141
+ prompt_template=f'''{prompt}
142
+ '''
143
+
144
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
145
+
146
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
147
+
148
+ llm = LLM(model="TheBloke/Yi-34B-200K-Llamafied-AWQ", quantization="awq", dtype="auto")
149
+
150
+ outputs = llm.generate(prompts, sampling_params)
151
+
152
+ # Print the outputs.
153
+ for output in outputs:
154
+ prompt = output.prompt
155
+ generated_text = output.outputs[0].text
156
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
157
+ ```
158
+ <!-- README_AWQ.md-use-from-vllm start -->
159
+
160
+ <!-- README_AWQ.md-use-from-tgi start -->
161
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
162
+
163
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
164
+
165
+ Example Docker parameters:
166
+
167
+ ```shell
168
+ --model-id TheBloke/Yi-34B-200K-Llamafied-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
169
+ ```
170
+
171
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
172
+
173
+ ```shell
174
+ pip3 install huggingface-hub
175
+ ```
176
+
177
+ ```python
178
+ from huggingface_hub import InferenceClient
179
+
180
+ endpoint_url = "https://your-endpoint-url-here"
181
+
182
+ prompt = "Tell me about AI"
183
+ prompt_template=f'''{prompt}
184
+ '''
185
+
186
+ client = InferenceClient(endpoint_url)
187
+ response = client.text_generation(prompt,
188
+ max_new_tokens=128,
189
+ do_sample=True,
190
+ temperature=0.7,
191
+ top_p=0.95,
192
+ top_k=40,
193
+ repetition_penalty=1.1)
194
+
195
+ print(f"Model output: ", response)
196
+ ```
197
+ <!-- README_AWQ.md-use-from-tgi end -->
198
+
199
+ <!-- README_AWQ.md-use-from-python start -->
200
+ ## Inference from Python code using Transformers
201
+
202
+ ### Install the necessary packages
203
+
204
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
205
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
206
+
207
+ ```shell
208
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
209
+ ```
210
+
211
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
212
+
213
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
214
+
215
+ ```shell
216
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
217
+ ```
218
+
219
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
220
+
221
+ ```shell
222
+ pip3 uninstall -y autoawq
223
+ git clone https://github.com/casper-hansen/AutoAWQ
224
+ cd AutoAWQ
225
+ pip3 install .
226
+ ```
227
+
228
+ ### Transformers example code (requires Transformers 4.35.0 and later)
229
+
230
+ ```python
231
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
232
+
233
+ model_name_or_path = "TheBloke/Yi-34B-200K-Llamafied-AWQ"
234
+
235
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
236
+ model = AutoModelForCausalLM.from_pretrained(
237
+ model_name_or_path,
238
+ low_cpu_mem_usage=True,
239
+ device_map="cuda:0"
240
+ )
241
+
242
+ # Using the text streamer to stream output one token at a time
243
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
244
+
245
+ prompt = "Tell me about AI"
246
+ prompt_template=f'''{prompt}
247
+ '''
248
+
249
+ # Convert prompt to tokens
250
+ tokens = tokenizer(
251
+ prompt_template,
252
+ return_tensors='pt'
253
+ ).input_ids.cuda()
254
+
255
+ generation_params = {
256
+ "do_sample": True,
257
+ "temperature": 0.7,
258
+ "top_p": 0.95,
259
+ "top_k": 40,
260
+ "max_new_tokens": 512,
261
+ "repetition_penalty": 1.1
262
+ }
263
+
264
+ # Generate streamed output, visible one token at a time
265
+ generation_output = model.generate(
266
+ tokens,
267
+ streamer=streamer,
268
+ **generation_params
269
+ )
270
+
271
+ # Generation without a streamer, which will include the prompt in the output
272
+ generation_output = model.generate(
273
+ tokens,
274
+ **generation_params
275
+ )
276
+
277
+ # Get the tokens from the output, decode them, print them
278
+ token_output = generation_output[0]
279
+ text_output = tokenizer.decode(token_output)
280
+ print("model.generate output: ", text_output)
281
+
282
+ # Inference is also possible via Transformers' pipeline
283
+ from transformers import pipeline
284
+
285
+ pipe = pipeline(
286
+ "text-generation",
287
+ model=model,
288
+ tokenizer=tokenizer,
289
+ **generation_params
290
+ )
291
+
292
+ pipe_output = pipe(prompt_template)[0]['generated_text']
293
+ print("pipeline output: ", pipe_output)
294
+
295
+ ```
296
+ <!-- README_AWQ.md-use-from-python end -->
297
+
298
+ <!-- README_AWQ.md-compatibility start -->
299
+ ## Compatibility
300
+
301
+ The files provided are tested to work with:
302
+
303
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
304
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
305
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
306
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
307
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
308
+
309
+ <!-- README_AWQ.md-compatibility end -->
310
+
311
+ <!-- footer start -->
312
+ <!-- 200823 -->
313
+ ## Discord
314
+
315
+ For further support, and discussions on these models and AI in general, join us at:
316
+
317
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
318
+
319
+ ## Thanks, and how to contribute
320
+
321
+ Thanks to the [chirper.ai](https://chirper.ai) team!
322
+
323
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
324
+
325
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
326
+
327
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
328
+
329
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
330
+
331
+ * Patreon: https://patreon.com/TheBlokeAI
332
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
333
+
334
+ **Special thanks to**: Aemon Algiz.
335
+
336
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
337
+
338
+
339
+ Thank you to all my generous patrons and donaters!
340
+
341
+ And thank you again to a16z for their generous grant.
342
+
343
+ <!-- footer end -->
344
+
345
+ # Original model card: larryvrh's Yi 34B 200K Llamafied
346
+
347
+ Llamafied version of 01-ai's [Yi-34B-200k](https://huggingface.co/01-ai/Yi-34B-200K) for ease of use.
348
+
349
+ ## Model Performance
350
+
351
+ | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code |
352
+ | :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
353
+ | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - |
354
+ | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 |
355
+ | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 |
356
+ | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 |
357
+ | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** |
358
+ | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 |
359
+ | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 |
360
+ | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - |
361
+ | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 |
362
+ | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 |
363
+ | Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 |
364
+ | **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 |
365
+ | Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 |
366
+
367
+ While benchmarking open-source models, we have observed a disparity between the
368
+ results generated by our pipeline and those reported in public sources (e.g.
369
+ OpenCompass). Upon conducting a more in-depth investigation of this difference,
370
+ we have discovered that various models may employ different prompts,
371
+ post-processing strategies, and sampling techniques, potentially resulting in
372
+ significant variations in the outcomes. Our prompt and post-processing strategy
373
+ remains consistent with the original benchmark, and greedy decoding is employed
374
+ during evaluation without any post-processing for the generated content. For
375
+ scores that were not reported by the original authors (including scores reported
376
+ with different settings), we try to get results with our pipeline.
377
+
378
+ To evaluate the model's capability extensively, we adopted the methodology
379
+ outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
380
+ ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
381
+ were incorporated to evaluate reading comprehension. CSQA was exclusively tested
382
+ using a 7-shot setup, while all other tests were conducted with a 0-shot
383
+ configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
384
+ HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
385
+ to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
386
+ is derived by averaging the scores on the remaining tasks. Since the scores for
387
+ these two tasks are generally lower than the average, we believe that
388
+ Falcon-180B's performance was not underestimated.
389
+
390
+ ## Usage
391
+
392
+ Please visit our [github repository](https://github.com/01-ai/Yi) for general
393
+ guidance on how to use this model.
394
+
395
+ ## Disclaimer
396
+
397
+ Although we use data compliance checking algorithms during the training process
398
+ to ensure the compliance of the trained model to the best of our ability, due to
399
+ the complexity of the data and the diversity of language model usage scenarios,
400
+ we cannot guarantee that the model will generate correct and reasonable output
401
+ in all scenarios. Please be aware that there is still a risk of the model
402
+ producing problematic outputs. We will not be responsible for any risks and
403
+ issues resulting from misuse, misguidance, illegal usage, and related
404
+ misinformation, as well as any associated data security concerns.
405
+
406
+ ## License
407
+
408
+ The Yi series models are fully open for academic research and free commercial
409
+ usage with permission via applications. All usage must adhere to the [Model
410
+ License Agreement 2.0](https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE). To
411
+ apply for the official commercial license, please contact us
412