|
--- |
|
inference: false |
|
license: other |
|
--- |
|
|
|
<!-- header start --> |
|
<div style="width: 100%;"> |
|
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> |
|
</div> |
|
<div style="display: flex; justify-content: space-between; width: 100%;"> |
|
<div style="display: flex; flex-direction: column; align-items: flex-start;"> |
|
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p> |
|
</div> |
|
<div style="display: flex; flex-direction: column; align-items: flex-end;"> |
|
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> |
|
</div> |
|
</div> |
|
<!-- header end --> |
|
|
|
# Jon Durbin's Airoboros MPT 30B GPT4 1.4 GGML |
|
|
|
These files are GGML format model files for [Jon Durbin's Airoboros MPT 30B GPT4 1.4](https://huggingface.co/jondurbin/airoboros-mpt-30b-gpt4-1p4-five-epochs). |
|
|
|
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: |
|
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui) |
|
* [KoboldCpp](https://github.com/LostRuins/koboldcpp) |
|
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) |
|
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) |
|
* [ctransformers](https://github.com/marella/ctransformers) |
|
|
|
## Repositories available |
|
|
|
* [4-bit GPTQ models for GPU inference](https://huggingface.co/none) |
|
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/airoboros-mpt-30b-gpt4-1p4-GGML) |
|
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-mpt-30b-gpt4-1p4-five-epochs) |
|
|
|
<!-- compatibility_ggml start --> |
|
## Compatibility |
|
|
|
### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` |
|
|
|
I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`. |
|
|
|
These are guaranteed to be compatbile with any UIs, tools and libraries released since late May. |
|
|
|
### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` |
|
|
|
These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`. |
|
|
|
They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt. |
|
|
|
## Explanation of the new k-quant methods |
|
|
|
The new methods available are: |
|
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) |
|
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. |
|
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. |
|
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw |
|
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw |
|
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type. |
|
|
|
Refer to the Provided Files table below to see what files use which methods, and how. |
|
<!-- compatibility_ggml end --> |
|
|
|
## Provided files |
|
| Name | Quant method | Bits | Size | Max RAM required | Use case | |
|
| ---- | ---- | ---- | ---- | ---- | ----- | |
|
| airoboros-mpt-30b-gpt4.ggmlv0.q4_0.bin | q4_0 | 4 | 16.85 GB | 19.35 GB | Original llama.cpp quant method, 4-bit. | |
|
| airoboros-mpt-30b-gpt4.ggmlv0.q4_1.bin | q4_1 | 4 | 18.73 GB | 21.23 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | |
|
| airoboros-mpt-30b-gpt4.ggmlv0.q5_0.bin | q5_0 | 5 | 20.60 GB | 23.10 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | |
|
| airoboros-mpt-30b-gpt4.ggmlv0.q5_1.bin | q5_1 | 5 | 22.47 GB | 24.97 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | |
|
| airoboros-mpt-30b-gpt4.ggmlv0.q8_0.bin | q8_0 | 8 | 31.83 GB | 34.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. | |
|
|
|
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. |
|
|
|
## How to run in `llama.cpp` |
|
|
|
I use the following command line; adjust for your tastes and needs: |
|
|
|
``` |
|
./main -t 10 -ngl 32 -m mpt-30b-chat.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:" |
|
``` |
|
If you're able to use full GPU offloading, you should use `-t 1` to get best performance. |
|
|
|
If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance. |
|
|
|
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. |
|
|
|
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` |
|
|
|
## How to run in `text-generation-webui` |
|
|
|
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). |
|
|
|
<!-- footer start --> |
|
## Discord |
|
|
|
For further support, and discussions on these models and AI in general, join us at: |
|
|
|
[TheBloke AI's Discord server](https://discord.gg/theblokeai) |
|
|
|
## Thanks, and how to contribute. |
|
|
|
Thanks to the [chirper.ai](https://chirper.ai) team! |
|
|
|
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. |
|
|
|
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. |
|
|
|
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. |
|
|
|
* Patreon: https://patreon.com/TheBlokeAI |
|
* Ko-Fi: https://ko-fi.com/TheBlokeAI |
|
|
|
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov. |
|
|
|
**Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire. |
|
|
|
Thank you to all my generous patrons and donaters! |
|
|
|
<!-- footer end --> |
|
|
|
# Original model card: Jon Durbin's Airoboros MPT 30B GPT4 1.4 |
|
|
|
|
|
## Overview |
|
|
|
This is a test of qlora fine-tuning of the mpt-30b model, __with 5 epochs__. |
|
|
|
qlora compatible model: https://huggingface.co/jondurbin/mpt-30b-qlora-compatible |
|
|
|
My fork of qlora with mpt-30b support: https://github.com/jondurbin/qlora |
|
|
|
Differences in the qlora scripts: |
|
|
|
- requires adding `--mpt True` for mpt-based models |
|
- uses `--num_train_epochs` instead of `--max_steps` |
|
- uses airoboros prompt format (mostly 1:1 with vicuna) rather than alpaca, and expects an input file in JSONL format with "instruction" and "response" |
|
|
|
__I think there's a bug in gradient accumulation, so if you try this, maybe set gradient accumulation steps to 1__ |
|
|
|
See the mpt-30b-qlora-compatible model card for training details. |
|
|
|
*This is not as high quality as the llama-33b versions unfortunately, but I don't have a great answer as to why. Perhaps there are fewer forward layers that can be tuned?* |
|
|
|
### License and usage |
|
|
|
This is a real gray area, here's why: |
|
|
|
- the dataset was generated with gpt-4, via https://github.com/jondurbin/airoboros |
|
- the ToS for openai API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI |
|
- what does *compete* actually mean here? |
|
- a 30b parameter model isn't anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place |
|
- if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works |
|
- the training data used in essentially all large language models includes a significant of copyrighted or otherwise unallowable licensing in the first place |
|
- other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2 |
|
|
|
I am purposingly not placing a license on here because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly. Your best bet is probably to avoid using this commercially, especially since it didn't perform quite as well as expected using qlora. |
|
|