--- license: other language: - en pipeline_tag: text2text-generation tags: - alpaca - llama - chat - gpt4 inference: false ---
TheBlokeAI

Chat & support: my new Discord server

Want to contribute? TheBloke's Patreon page

# GPT4 Alpaca LoRA 30B - 4bit GGML This is a 4-bit GGML version of the [Chansung GPT4 Alpaca 30B LoRA model](https://huggingface.co/chansung/gpt4-alpaca-lora-30b). It was created by merging the LoRA provided in the above repo with the original Llama 30B model, producing unquantised model [GPT4-Alpaca-LoRA-30B-HF](https://huggingface.co/TheBloke/gpt4-alpaca-lora-30b-HF) The files in this repo were then quantized to 4bit and 5bit for use with [llama.cpp](https://github.com/ggerganov/llama.cpp). ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)! llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508 I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them. For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`. ## Provided files | Name | Quant method | Bits | Size | RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | `gpt4-alpaca-lora-30B.ggmlv3.q4_0.bin` | q4_0 | 4bit | 20.3GB | 23GB | 4bit. | `gpt4-alpaca-lora-30B.ggmlv3.q4_1.bin` | q4_1 | 4bit | 22.4GB | 25GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | `gpt4-alpaca-lora-30B.ggmlv3.q5_0.bin` | q5_0 | 5bit | 22.4GB | 25GB | 5bit. Higher accuracy, higher resource usage, slower inference. | `gpt4-alpaca-lora-30B.ggmlv3.q5_1.bin` | q5_1 | 5bit | 24.4GB | 27GB | 5bit. Even higher accuracy and resource usage, and slower inference. | ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 18 -m gpt4-alpaca-lora-30B.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: Write a story about llamas ### Response:" ``` Change `-t 18` to the number of physical CPU cores you have. For example if your system has 6 cores/12 threads, use `-t 6`. If you want to have a chat-style conversation, replace the `-p ` argument with `-i -ins` ## How to run in `text-generation-webui` Create a model directory that has `ggml` (case sensitive) in its name. Then put the desired .bin file in that model directory. Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). Note: at this time text-generation-webui may not support the new May 19th llama.cpp quantisation methods for q4_0, q4_1 and q8_0 files. ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman. Thank you to all my generous patrons and donaters! # Original GPT4 Alpaca Lora model card This repository comes with LoRA checkpoint to make LLaMA into a chatbot like language model. The checkpoint is the output of instruction following fine-tuning process with the following settings on 8xA100(40G) DGX system. - Training script: borrowed from the official [Alpaca-LoRA](https://github.com/tloen/alpaca-lora) implementation - Training script: ```shell python finetune.py \ --base_model='decapoda-research/llama-30b-hf' \ --data_path='alpaca_data_gpt4.json' \ --num_epochs=10 \ --cutoff_len=512 \ --group_by_length \ --output_dir='./gpt4-alpaca-lora-30b' \ --lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \ --lora_r=16 \ --batch_size=... \ --micro_batch_size=... ``` You can find how the training went from W&B report [here](https://wandb.ai/chansung18/gpt4_alpaca_lora/runs/w3syd157?workspace=user-chansung18).