TheBloke commited on
Commit
eb634be
·
verified ·
1 Parent(s): 2a1a4de

GPTQ model commit

Browse files
LICENSE ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE AGREEMENT
2
+ Dated: December 06, 2023
3
+
4
+ By using or distributing any portion or element of the Models, Software, Software Products or Derivative Works, you agree to be bound by this Agreement.
5
+
6
+ "Agreement" means this Stable Non-Commercial Research Community License Agreement.
7
+
8
+ “AUP” means the Stability AI Acceptable Use Policy available at https://stability.ai/use-policy, as may be updated from time to time.
9
+
10
+ "Derivative Work(s)” means (a) any derivative work of the Software Products as recognized by U.S. copyright laws and (b) any modifications to a Model, and any other model created which is based on or derived from the Model or the Model’s output. For clarity, Derivative Works do not include the output of any Model.
11
+
12
+ “Documentation” means any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software.
13
+
14
+ "Licensee" or "you" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity's behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.
15
+
16
+ “Model(s)" means, collectively, Stability AI’s proprietary models and algorithms, including machine-learning models, trained model weights and other elements of the foregoing, made available under this Agreement.
17
+
18
+ “Non-Commercial Uses” means exercising any of the rights granted herein for the purpose of research or non-commercial purposes. Non-Commercial Uses does not include any production use of the Software Products or any Derivative Works.
19
+
20
+ "Stability AI" or "we" means Stability AI Ltd. and its affiliates.
21
+
22
+
23
+ "Software" means Stability AI’s proprietary software made available under this Agreement.
24
+
25
+ “Software Products” means the Models, Software and Documentation, individually or in any combination.
26
+
27
+
28
+
29
+ 1. License Rights and Redistribution.
30
+ a. Subject to your compliance with this Agreement, the AUP (which is hereby incorporated herein by reference), and the Documentation, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AI’s intellectual property or other rights owned or controlled by Stability AI embodied in the Software Products to use, reproduce, distribute, and create Derivative Works of, the Software Products, in each case for Non-Commercial Uses only.
31
+ b. You may not use the Software Products or Derivative Works to enable third parties to use the Software Products or Derivative Works as part of your hosted service or via your APIs, whether you are adding substantial additional functionality thereto or not. Merely distributing the Software Products or Derivative Works for download online without offering any related service (ex. by distributing the Models on HuggingFace) is not a violation of this subsection. If you wish to use the Software Products or any Derivative Works for commercial or production use or you wish to make the Software Products or any Derivative Works available to third parties via your hosted service or your APIs, contact Stability AI at https://stability.ai/contact.
32
+ c. If you distribute or make the Software Products, or any Derivative Works thereof, available to a third party, the Software Products, Derivative Works, or any portion thereof, respectively, will remain subject to this Agreement and you must (i) provide a copy of this Agreement to such third party, and (ii) retain the following attribution notice within a "Notice" text file distributed as a part of such copies: "This Stability AI Model is licensed under the Stability AI Non-Commercial Research Community License, Copyright (c) Stability AI Ltd. All Rights Reserved.” If you create a Derivative Work of a Software Product, you may add your own attribution notices to the Notice file included with the Software Product, provided that you clearly indicate which attributions apply to the Software Product and you must state in the NOTICE file that you changed the Software Product and how it was modified.
33
+ 2. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE SOFTWARE PRODUCTS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE SOFTWARE PRODUCTS, DERIVATIVE WORKS OR ANY OUTPUT OR RESULTS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE SOFTWARE PRODUCTS, DERIVATIVE WORKS AND ANY OUTPUT AND RESULTS.
34
+ 3. Limitation of Liability. IN NO EVENT WILL STABILITY AI OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF STABILITY AI OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.
35
+ 4. Intellectual Property.
36
+ a. No trademark licenses are granted under this Agreement, and in connection with the Software Products or Derivative Works, neither Stability AI nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Software Products or Derivative Works.
37
+ b. Subject to Stability AI’s ownership of the Software Products and Derivative Works made by or for Stability AI, with respect to any Derivative Works that are made by you, as between you and Stability AI, you are and will be the owner of such Derivative Works
38
+ c. If you institute litigation or other proceedings against Stability AI (including a cross-claim or counterclaim in a lawsuit) alleging that the Software Products, Derivative Works or associated outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Stability AI from and against any claim by any third party arising out of or related to your use or distribution of the Software Products or Derivative Works in violation of this Agreement.
39
+ 5. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Software Products and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Stability AI may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of any Software Products or Derivative Works. Sections 2-4 shall survive the termination of this Agreement.
40
+
41
+ 6. Governing Law. This Agreement will be governed by and construed in accordance with the laws of the United States and the State of California without regard to choice of law
42
+ principles.
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/process/stabilityai_stable-code-3b/source",
3
+ "architectures": [
4
+ "StableLMEpochForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_stablelm_epoch.StableLMEpochConfig",
8
+ "AutoModelForCausalLM": "modeling_stablelm_epoch.StableLMEpochForCausalLM"
9
+ },
10
+ "bos_token_id": 0,
11
+ "eos_token_id": 0,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 2560,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 6912,
16
+ "max_position_embeddings": 16384,
17
+ "model_type": "stablelm_epoch",
18
+ "norm_eps": 1e-05,
19
+ "num_attention_heads": 32,
20
+ "num_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pad_token_id": 0,
24
+ "pretraining_tp": 1,
25
+ "quantization_config": {
26
+ "batch_size": 1,
27
+ "bits": 4,
28
+ "block_name_to_quantize": null,
29
+ "cache_block_outputs": true,
30
+ "damp_percent": 0.1,
31
+ "desc_act": true,
32
+ "exllama_config": {
33
+ "version": 1
34
+ },
35
+ "group_size": 128,
36
+ "max_input_length": null,
37
+ "model_seqlen": null,
38
+ "module_name_preceding_first_block": null,
39
+ "modules_in_block_to_quantize": null,
40
+ "pad_token_id": null,
41
+ "quant_method": "gptq",
42
+ "sym": true,
43
+ "tokenizer": null,
44
+ "true_sequential": true,
45
+ "use_cuda_fp16": false,
46
+ "use_exllama": true
47
+ },
48
+ "rope_pct": 0.25,
49
+ "rope_theta": 1000000,
50
+ "rotary_scaling_factor": 1.0,
51
+ "tie_word_embeddings": false,
52
+ "torch_dtype": "bfloat16",
53
+ "transformers_version": "4.37.0.dev0",
54
+ "use_cache": true,
55
+ "vocab_size": 50304
56
+ }
configuration_stablelm_epoch.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ StableLM Epoch model configuration"""
16
+ from transformers import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class StableLMEpochConfig(PretrainedConfig):
24
+ r"""
25
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
26
+ documentation from [`PretrainedConfig`] for more information.
27
+
28
+ Args:
29
+ vocab_size (`int`, *optional*, defaults to 50_304):
30
+ Vocabulary size of the StableLM model. Defines the number of different tokens that
31
+ can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`].
32
+ intermediate_size (`int`, *optional*, defaults to 6912):
33
+ Dimension of the MLP representations.
34
+ hidden_size (`int`, *optional*, defaults to 2560):
35
+ Dimension of the decoder layers and the pooler layer.
36
+ num_hidden_layers (`int`, *optional*, defaults to 32):
37
+ Number of hidden layers in the Transformer decoder.
38
+ num_attention_heads (`int`, *optional*, defaults to 32):
39
+ Number of attention heads for each attention layer in the Transformer encoder.
40
+ num_key_value_heads (`int`, *optional*):
41
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
42
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
43
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
44
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
45
+ by meanpooling all the original heads within that group. For more details checkout [this
46
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
47
+ `num_attention_heads`.
48
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
49
+ The non-linear activation function (function or string).
50
+ rope_pct (`float`, *optional*, defaults to 1.0):
51
+ Percentage of hidden dimensions to allocate to rotary embeddings.
52
+ rope_theta (`float`, *optional*, defaults to 10000.0):
53
+ The base period of the RoPE embeddings.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with.
56
+ Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 1e-5):
58
+ The standard deviation of the truncated_normal_initializer for initializing
59
+ all weight matrices.
60
+ norm_eps (`float`, *optional*, defaults to 1e-8):
61
+ The epsilon used by the normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions
64
+ (not used by all models). Only relevant if `config.is_decoder=True`.
65
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
66
+ Whether to tie weight embeddings
67
+ """
68
+ model_type = "stablelm_epoch"
69
+ keys_to_ignore_at_inference = ["past_key_values"]
70
+
71
+ def __init__(
72
+ self,
73
+ vocab_size=50_304,
74
+ intermediate_size=6912,
75
+ hidden_size=2560,
76
+ num_hidden_layers=32,
77
+ num_attention_heads=32,
78
+ num_key_value_heads=32,
79
+ hidden_act="silu",
80
+ rope_pct=0.25,
81
+ rope_theta=10_000,
82
+ max_position_embeddings=4096,
83
+ initializer_range=0.02,
84
+ norm_eps=1.0e-5,
85
+ use_cache=True,
86
+ bos_token_id=0,
87
+ eos_token_id=2,
88
+ tie_word_embeddings=False,
89
+ **kwargs,
90
+ ):
91
+ self.vocab_size = vocab_size
92
+ self.max_position_embeddings = max_position_embeddings
93
+ self.intermediate_size = intermediate_size
94
+ self.hidden_size = hidden_size
95
+ self.num_hidden_layers = num_hidden_layers
96
+ self.num_attention_heads = num_attention_heads
97
+ self.num_key_value_heads = num_key_value_heads
98
+ self.hidden_act = hidden_act
99
+ self.rope_pct = rope_pct
100
+ self.rope_theta = rope_theta
101
+ self.initializer_range = initializer_range
102
+ self.norm_eps = norm_eps
103
+ self.use_cache = use_cache
104
+ self.tie_word_embeddings = tie_word_embeddings
105
+ super().__init__(
106
+ bos_token_id=bos_token_id,
107
+ eos_token_id=eos_token_id,
108
+ tie_word_embeddings=tie_word_embeddings,
109
+ **kwargs,
110
+ )
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.36.2"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25ba297ef84c97f22220d067e93ffd4a0cc3601ebb88d6a7acd3d2f3f1de70be
3
+ size 1838811216
modeling_stablelm_epoch.py ADDED
@@ -0,0 +1,916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ # This code is based off the following work:
17
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
18
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
19
+ """ PyTorch StableLM Epoch model. """
20
+ from typing import Optional, Tuple, Union
21
+ import math
22
+ import warnings
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import CrossEntropyLoss
29
+
30
+ from transformers.cache_utils import Cache
31
+ from transformers.modeling_outputs import (
32
+ BaseModelOutputWithPast,
33
+ CausalLMOutputWithPast,
34
+ )
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import logging, is_flash_attn_greater_or_equal_2_10
37
+
38
+ from .configuration_stablelm_epoch import StableLMEpochConfig
39
+
40
+ try:
41
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
42
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
43
+ except:
44
+ flash_attn_func, flash_attn_varlen_func = None, None
45
+ index_first_axis, pad_input, unpad_input = None, None, None
46
+
47
+
48
+ logger = logging.get_logger(__name__)
49
+
50
+
51
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
52
+ def _get_unpad_data(attention_mask):
53
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
54
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
55
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
56
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
57
+ return (
58
+ indices,
59
+ cu_seqlens,
60
+ max_seqlen_in_batch,
61
+ )
62
+
63
+
64
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
65
+ def _make_causal_mask(
66
+ input_ids_shape: torch.Size,
67
+ dtype: torch.dtype,
68
+ device: torch.device,
69
+ past_key_values_length: int = 0,
70
+ ):
71
+ """Make causal mask used for bi-directional self-attention."""
72
+ batch_size, tgt_len = input_ids_shape
73
+ mask = torch.full((tgt_len, tgt_len), torch.finfo(torch.float16).min, device=device)
74
+ mask_cond = torch.arange(mask.size(-1), device=device)
75
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
76
+ mask = mask.to(dtype)
77
+ if past_key_values_length > 0:
78
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
79
+ return mask[None, None, :, :].expand(batch_size, 1, tgt_len, tgt_len + past_key_values_length)
80
+
81
+
82
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
83
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
84
+ """Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, tgt_seq_len, src_seq_len]`."""
85
+ batch_size, src_len = mask.size()
86
+ tgt_len = tgt_len if tgt_len is not None else src_len
87
+
88
+ expanded_mask = mask[:, None, None, :].expand(batch_size, 1, tgt_len, src_len).to(dtype)
89
+ inverted_mask = 1.0 - expanded_mask
90
+
91
+ return inverted_mask.masked_fill(
92
+ inverted_mask.to(torch.bool), torch.finfo(dtype).min
93
+ )
94
+
95
+
96
+ class RotaryEmbedding(nn.Module):
97
+ def __init__(
98
+ self,
99
+ dim: int,
100
+ max_position_embeddings: int,
101
+ base: int = 10_000,
102
+ device: Optional[torch.device] = None,
103
+ ):
104
+ super().__init__()
105
+
106
+ self.dim = dim
107
+ self.max_position_embeddings = max_position_embeddings
108
+ self.base = base
109
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
110
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
111
+
112
+ # Build here to make `torch.jit.trace` work.
113
+ self._set_cos_sin_cache(
114
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype(),
115
+ )
116
+
117
+ def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype):
118
+ self.max_seq_len_cached = seq_len
119
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
120
+
121
+ # Don't do einsum, it converts fp32 to fp16 under AMP
122
+ # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
123
+ freqs = torch.outer(t, self.inv_freq)
124
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
125
+ emb = torch.cat((freqs, freqs), dim=-1)
126
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
127
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
128
+
129
+ def forward(self, x: torch.Tensor, seq_len: Optional[int] = None):
130
+ # x: [batch_size, num_heads, seq_len, head_size]
131
+ if seq_len > self.max_seq_len_cached:
132
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.get_default_dtype())
133
+ return (
134
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
135
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
136
+ )
137
+
138
+
139
+ def rotate_half(x: torch.Tensor):
140
+ """Rotates half the hidden dims of the input."""
141
+ x1, x2 = torch.chunk(x, 2, dim=-1)
142
+ return torch.cat((-x2, x1), dim=-1)
143
+
144
+
145
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
146
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
147
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
148
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
149
+ cos = cos[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
150
+ sin = sin[position_ids].unsqueeze(1) # [batch_size, 1, seq_len, dim]
151
+ q_embed = (q * cos) + (rotate_half(q) * sin)
152
+ k_embed = (k * cos) + (rotate_half(k) * sin)
153
+ return q_embed, k_embed
154
+
155
+
156
+ class MLP(nn.Module):
157
+ def __init__(self, config: StableLMEpochConfig):
158
+ super().__init__()
159
+ self.config = config
160
+ self.hidden_size = config.hidden_size
161
+ self.intermediate_size = config.intermediate_size
162
+ self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
163
+ self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
164
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
165
+ self.act_fn = nn.SiLU()
166
+
167
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
168
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
169
+
170
+
171
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
172
+ """
173
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
174
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
175
+ """
176
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
177
+ if n_rep == 1:
178
+ return hidden_states
179
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
180
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
181
+
182
+
183
+ class Attention(nn.Module):
184
+ def __init__(self, config: StableLMEpochConfig):
185
+ super().__init__()
186
+ self.config = config
187
+ self.hidden_size = config.hidden_size
188
+ self.num_heads = config.num_attention_heads
189
+ self.head_dim = self.hidden_size // self.num_heads
190
+ self.num_key_value_heads = config.num_key_value_heads
191
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
192
+ self.max_position_embeddings = config.max_position_embeddings
193
+ self.is_causal = True
194
+
195
+ if (self.head_dim * self.num_heads) != self.hidden_size:
196
+ raise ValueError(
197
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
198
+ f" and `num_heads`: {self.num_heads})."
199
+ )
200
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
201
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
202
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
203
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
204
+
205
+ self._init_rope()
206
+
207
+ def _init_rope(self):
208
+ self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
209
+ self.rotary_emb = RotaryEmbedding(
210
+ self.rotary_ndims,
211
+ max_position_embeddings=self.config.max_position_embeddings,
212
+ base=self.config.rope_theta,
213
+ )
214
+
215
+ def forward(
216
+ self,
217
+ hidden_states: torch.FloatTensor,
218
+ attention_mask: torch.FloatTensor,
219
+ position_ids: torch.LongTensor,
220
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
221
+ output_attentions: Optional[bool] = False,
222
+ use_cache: Optional[bool] = False,
223
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
224
+ bsz, q_len, _ = hidden_states.size()
225
+
226
+ query_states = self.q_proj(hidden_states)
227
+ key_states = self.k_proj(hidden_states)
228
+ value_states = self.v_proj(hidden_states)
229
+
230
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
231
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
232
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
233
+
234
+ query_rot = query_states[..., : self.rotary_ndims]
235
+ query_pass = query_states[..., self.rotary_ndims :]
236
+ key_rot = key_states[..., : self.rotary_ndims]
237
+ key_pass = key_states[..., self.rotary_ndims :]
238
+
239
+ kv_seq_len = key_states.shape[-2]
240
+ if past_key_value is not None:
241
+ kv_seq_len += past_key_value[0].shape[-2]
242
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
243
+ query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
244
+
245
+ # [batch_size, num_heads, seq_len, head_dim]
246
+ query_states = torch.cat((query_states, query_pass), dim=-1)
247
+ key_states = torch.cat((key_states, key_pass), dim=-1)
248
+
249
+ if past_key_value is not None:
250
+ # Reuse k, v, self_attention
251
+ key_states = torch.cat((past_key_value[0], key_states), dim=2)
252
+ value_states = torch.cat((past_key_value[1], value_states), dim=2)
253
+
254
+ past_key_value = (key_states, value_states) if use_cache else None
255
+
256
+ # Repeat k/v heads if n_kv_heads < n_heads
257
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
258
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
259
+
260
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
261
+
262
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
263
+ raise ValueError(
264
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
265
+ f" {attn_weights.size()}"
266
+ )
267
+
268
+ if attention_mask is not None:
269
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
270
+ raise ValueError(
271
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
272
+ )
273
+ attn_weights = attn_weights + attention_mask
274
+
275
+ # Upcast attention to fp32
276
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
277
+ attn_output = torch.matmul(attn_weights, value_states)
278
+
279
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
280
+ raise ValueError(
281
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
282
+ f" {attn_output.size()}"
283
+ )
284
+
285
+ # Merge heads
286
+ attn_output = attn_output.transpose(1, 2).contiguous()
287
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
288
+
289
+ # Final linear projection
290
+ attn_output = self.o_proj(attn_output)
291
+
292
+ if not output_attentions:
293
+ attn_weights = None
294
+
295
+ return attn_output, attn_weights, past_key_value
296
+
297
+
298
+ class FlashAttention2(Attention):
299
+ """
300
+ Reference: https://github.com/huggingface/transformers/blob/5d36025ca13d05151b7a0c761e90d429c4644a30/src/transformers/models/llama/modeling_llama.py#L456
301
+ """
302
+
303
+ def __init__(self, *args, **kwargs):
304
+ super().__init__(*args, **kwargs)
305
+
306
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
307
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
308
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
309
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
310
+
311
+ def forward(
312
+ self,
313
+ hidden_states: torch.Tensor,
314
+ attention_mask: Optional[torch.LongTensor] = None,
315
+ position_ids: Optional[torch.LongTensor] = None,
316
+ past_key_value: Optional[Cache] = None,
317
+ output_attentions: bool = False,
318
+ use_cache: bool = False,
319
+ **kwargs,
320
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
321
+ # FlashAttention2 attention does not support output_attentions
322
+ if "padding_mask" in kwargs:
323
+ warnings.warn(
324
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
325
+ )
326
+
327
+ # overwrite attention_mask with padding_mask
328
+ attention_mask = kwargs.pop("padding_mask")
329
+
330
+ output_attentions = False
331
+
332
+ bsz, q_len, _ = hidden_states.size()
333
+
334
+ query_states = self.q_proj(hidden_states)
335
+ key_states = self.k_proj(hidden_states)
336
+ value_states = self.v_proj(hidden_states)
337
+
338
+ # Flash attention requires the input to have the shape
339
+ # batch_size x seq_length x head_dim x hidden_dim
340
+ # therefore we just need to keep the original shape
341
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
342
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
343
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
344
+
345
+ query_rot = query_states[..., : self.rotary_ndims]
346
+ query_pass = query_states[..., self.rotary_ndims :]
347
+ key_rot = key_states[..., : self.rotary_ndims]
348
+ key_pass = key_states[..., self.rotary_ndims :]
349
+
350
+ kv_seq_len = key_states.shape[-2]
351
+ if past_key_value is not None:
352
+ kv_seq_len += past_key_value[0].shape[-2]
353
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
354
+ query_states, key_states = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids)
355
+
356
+ # [batch_size, num_heads, seq_len, head_dim]
357
+ query_states = torch.cat((query_states, query_pass), dim=-1)
358
+ key_states = torch.cat((key_states, key_pass), dim=-1)
359
+
360
+ if past_key_value is not None:
361
+ # Reuse k, v, self_attention
362
+ key_states = torch.cat((past_key_value[0], key_states), dim=2)
363
+ value_states = torch.cat((past_key_value[1], value_states), dim=2)
364
+
365
+ past_key_value = (key_states, value_states) if use_cache else None
366
+
367
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
368
+ # to be able to avoid many of these transpose/reshape/view.
369
+ query_states = query_states.transpose(1, 2)
370
+ key_states = key_states.transpose(1, 2)
371
+ value_states = value_states.transpose(1, 2)
372
+
373
+ dropout_rate = self.attention_dropout if self.training else 0.0
374
+
375
+ attn_output = self._flash_attention_forward(
376
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
377
+ )
378
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
379
+ attn_output = self.o_proj(attn_output)
380
+
381
+ if not output_attentions:
382
+ attn_weights = None
383
+
384
+ return attn_output, attn_weights, past_key_value
385
+
386
+ def _flash_attention_forward(
387
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
388
+ ):
389
+ """
390
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
391
+ first unpad the input, then computes the attention scores and pad the final attention scores.
392
+
393
+ Args:
394
+ query_states (`torch.Tensor`):
395
+ Input query states to be passed to Flash Attention API
396
+ key_states (`torch.Tensor`):
397
+ Input key states to be passed to Flash Attention API
398
+ value_states (`torch.Tensor`):
399
+ Input value states to be passed to Flash Attention API
400
+ attention_mask (`torch.Tensor`):
401
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
402
+ position of padding tokens and 1 for the position of non-padding tokens.
403
+ dropout (`int`, *optional*):
404
+ Attention dropout
405
+ softmax_scale (`float`, *optional*):
406
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
407
+ """
408
+ if not self._flash_attn_uses_top_left_mask:
409
+ causal = self.is_causal
410
+ else:
411
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in FlashAttention2 __init__.
412
+ causal = self.is_causal and query_length != 1
413
+
414
+ # Contains at least one padding token in the sequence
415
+ if attention_mask is not None:
416
+ batch_size = query_states.shape[0]
417
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
418
+ query_states, key_states, value_states, attention_mask, query_length
419
+ )
420
+
421
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
422
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
423
+
424
+ attn_output_unpad = flash_attn_varlen_func(
425
+ query_states,
426
+ key_states,
427
+ value_states,
428
+ cu_seqlens_q=cu_seqlens_q,
429
+ cu_seqlens_k=cu_seqlens_k,
430
+ max_seqlen_q=max_seqlen_in_batch_q,
431
+ max_seqlen_k=max_seqlen_in_batch_k,
432
+ dropout_p=dropout,
433
+ softmax_scale=softmax_scale,
434
+ causal=causal,
435
+ )
436
+
437
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
438
+ else:
439
+ attn_output = flash_attn_func(
440
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
441
+ )
442
+
443
+ return attn_output
444
+
445
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
446
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
447
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
448
+
449
+ key_layer = index_first_axis(
450
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
451
+ )
452
+ value_layer = index_first_axis(
453
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
454
+ )
455
+ if query_length == kv_seq_len:
456
+ query_layer = index_first_axis(
457
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
458
+ )
459
+ cu_seqlens_q = cu_seqlens_k
460
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
461
+ indices_q = indices_k
462
+ elif query_length == 1:
463
+ max_seqlen_in_batch_q = 1
464
+ cu_seqlens_q = torch.arange(
465
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
466
+ ) # There is a memcpy here, that is very bad.
467
+ indices_q = cu_seqlens_q[:-1]
468
+ query_layer = query_layer.squeeze(1)
469
+ else:
470
+ # The -q_len: slice assumes left padding.
471
+ attention_mask = attention_mask[:, -query_length:]
472
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
473
+
474
+ return (
475
+ query_layer,
476
+ key_layer,
477
+ value_layer,
478
+ indices_q,
479
+ (cu_seqlens_q, cu_seqlens_k),
480
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
481
+ )
482
+
483
+
484
+ ATTENTION_CLASSES = {
485
+ "eager": Attention,
486
+ "flash_attention_2": FlashAttention2,
487
+ }
488
+
489
+
490
+ class DecoderLayer(nn.Module):
491
+ def __init__(self, config: StableLMEpochConfig):
492
+ super().__init__()
493
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](config=config)
494
+ self.mlp = MLP(config)
495
+ self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
496
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
497
+
498
+ def forward(
499
+ self,
500
+ hidden_states: Optional[torch.FloatTensor],
501
+ attention_mask: Optional[torch.FloatTensor] = None,
502
+ position_ids: Optional[torch.LongTensor] = None,
503
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
504
+ output_attentions: Optional[bool] = False,
505
+ use_cache: Optional[bool] = False,
506
+ ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
507
+ residual = hidden_states
508
+
509
+ hidden_states = self.input_layernorm(hidden_states)
510
+
511
+ # Self Attention
512
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
513
+ hidden_states=hidden_states,
514
+ attention_mask=attention_mask,
515
+ position_ids=position_ids,
516
+ past_key_value=past_key_value,
517
+ output_attentions=output_attentions,
518
+ use_cache=use_cache,
519
+ )
520
+ hidden_states = residual + hidden_states
521
+
522
+ # Fully Connected
523
+ residual = hidden_states
524
+ hidden_states = self.post_attention_layernorm(hidden_states)
525
+ hidden_states = self.mlp(hidden_states)
526
+ hidden_states = residual + hidden_states
527
+
528
+ outputs = (hidden_states,)
529
+
530
+ if output_attentions:
531
+ outputs += (self_attn_weights,)
532
+
533
+ if use_cache:
534
+ outputs += (present_key_value,)
535
+
536
+ return outputs
537
+
538
+
539
+ class StableLMEpochPreTrainedModel(PreTrainedModel):
540
+ """An abstract class to handle weights initialization and a simple interface
541
+ for downloading and loading pretrained models.
542
+ """
543
+
544
+ config_class = StableLMEpochConfig
545
+ base_model_prefix = "transformer"
546
+ supports_gradient_checkpointing = True
547
+ _no_split_modules = ["DecoderLayer"]
548
+ _skip_keys_device_placement = "past_key_values"
549
+ _supports_flash_attn_2 = True
550
+
551
+ def _init_weights(self, module: nn.Module):
552
+ """Initialize the weights"""
553
+ if isinstance(module, nn.Linear):
554
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
555
+ if module.bias is not None:
556
+ module.bias.data.zero_()
557
+ elif isinstance(module, nn.Embedding):
558
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
559
+ if module.padding_idx is not None:
560
+ module.weight.data[module.padding_idx].zero_()
561
+ elif isinstance(module, nn.LayerNorm):
562
+ module.bias.data.zero_()
563
+ module.weight.data.fill_(1.0)
564
+
565
+ def _set_gradient_checkpointing(self, module: nn.Module, value=False):
566
+ if isinstance(module, StableLMEpochModel):
567
+ module.gradient_checkpointing = value
568
+
569
+
570
+ class StableLMEpochModel(StableLMEpochPreTrainedModel):
571
+ def __init__(self, config: StableLMEpochConfig):
572
+ super().__init__(config)
573
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
574
+ self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
575
+ self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
576
+
577
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
578
+ self.gradient_checkpointing = False
579
+ # Initialize weights and apply final processing
580
+ self.post_init()
581
+
582
+ def get_input_embeddings(self):
583
+ return self.embed_tokens
584
+
585
+ def set_input_embeddings(self, value: nn.Module):
586
+ self.embed_tokens = value
587
+
588
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
589
+ def _prepare_decoder_attention_mask(
590
+ self,
591
+ attention_mask: torch.Tensor,
592
+ input_shape: torch.Size,
593
+ inputs_embeds: torch.Tensor,
594
+ past_key_values_length: int,
595
+ ):
596
+ # Create causal mask
597
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
598
+ combined_attention_mask = None
599
+ if input_shape[-1] > 1:
600
+ combined_attention_mask = _make_causal_mask(
601
+ input_shape,
602
+ inputs_embeds.dtype,
603
+ device=inputs_embeds.device,
604
+ past_key_values_length=past_key_values_length,
605
+ )
606
+
607
+ if attention_mask is not None:
608
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
609
+ expanded_attn_mask = _expand_mask(
610
+ attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
611
+ ).to(inputs_embeds.device)
612
+ combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
613
+
614
+ return combined_attention_mask
615
+
616
+ def forward(
617
+ self,
618
+ input_ids: Optional[torch.LongTensor] = None,
619
+ attention_mask: Optional[torch.FloatTensor] = None,
620
+ position_ids: Optional[torch.LongTensor] = None,
621
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
622
+ inputs_embeds: Optional[torch.FloatTensor] = None,
623
+ use_cache: Optional[bool] = None,
624
+ output_attentions: Optional[bool] = None,
625
+ output_hidden_states: Optional[bool] = None,
626
+ return_dict: Optional[bool] = None,
627
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
628
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
629
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
630
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
631
+
632
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
633
+
634
+ # Retrieve input_ids and inputs_embeds
635
+ if input_ids is not None and inputs_embeds is not None:
636
+ raise ValueError(
637
+ "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
638
+ )
639
+ elif input_ids is not None:
640
+ batch_size, seq_length = input_ids.shape
641
+ elif inputs_embeds is not None:
642
+ batch_size, seq_length, _ = inputs_embeds.shape
643
+ else:
644
+ raise ValueError(
645
+ "You have to specify either decoder_input_ids or decoder_inputs_embeds"
646
+ )
647
+
648
+ seq_length_with_past = seq_length
649
+ past_key_values_length = 0
650
+
651
+ if position_ids is None:
652
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
653
+ position_ids = torch.arange(
654
+ past_key_values_length,
655
+ seq_length + past_key_values_length,
656
+ dtype=torch.long,
657
+ device=device,
658
+ )
659
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
660
+ else:
661
+ position_ids = position_ids.view(-1, seq_length).long()
662
+
663
+ if inputs_embeds is None:
664
+ inputs_embeds = self.embed_tokens(input_ids)
665
+ # Embed positions
666
+ if self._use_flash_attention_2:
667
+ # 2d mask is passed through the layers
668
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
669
+ else:
670
+ if attention_mask is None:
671
+ attention_mask = torch.ones(
672
+ (batch_size, seq_length_with_past),
673
+ dtype=torch.bool,
674
+ device=inputs_embeds.device,
675
+ )
676
+ attention_mask = self._prepare_decoder_attention_mask(
677
+ attention_mask,
678
+ (batch_size, seq_length),
679
+ inputs_embeds,
680
+ past_key_values_length,
681
+ )
682
+
683
+ hidden_states = inputs_embeds
684
+
685
+ if self.gradient_checkpointing and self.training:
686
+ if use_cache:
687
+ logger.warning(
688
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
689
+ )
690
+ use_cache = False
691
+
692
+ # Decoder layers
693
+ all_hidden_states = () if output_hidden_states else None
694
+ all_self_attns = () if output_attentions else None
695
+ next_decoder_cache = () if use_cache else None
696
+
697
+ for idx, decoder_layer in enumerate(self.layers):
698
+ if output_hidden_states:
699
+ all_hidden_states += (hidden_states,)
700
+
701
+ past_key_value = (
702
+ past_key_values[idx] if past_key_values is not None else None
703
+ )
704
+
705
+ if self.gradient_checkpointing and self.training:
706
+
707
+ def create_custom_forward(module):
708
+ def custom_forward(*inputs):
709
+ # None for past_key_value
710
+ return module(*inputs, past_key_value, output_attentions)
711
+
712
+ return custom_forward
713
+
714
+ layer_outputs = torch.utils.checkpoint.checkpoint(
715
+ create_custom_forward(decoder_layer),
716
+ hidden_states,
717
+ attention_mask,
718
+ position_ids,
719
+ )
720
+ else:
721
+ layer_outputs = decoder_layer(
722
+ hidden_states,
723
+ attention_mask=attention_mask,
724
+ position_ids=position_ids,
725
+ past_key_value=past_key_value,
726
+ output_attentions=output_attentions,
727
+ use_cache=use_cache,
728
+ )
729
+
730
+ hidden_states = layer_outputs[0]
731
+
732
+ if use_cache:
733
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
734
+
735
+ if output_attentions:
736
+ all_self_attns += (layer_outputs[1],)
737
+
738
+ hidden_states = self.norm(hidden_states)
739
+
740
+ # Add hidden states from the last decoder layer
741
+ if output_hidden_states:
742
+ all_hidden_states += (hidden_states,)
743
+
744
+ next_cache = next_decoder_cache if use_cache else None
745
+ if not return_dict:
746
+ return tuple(
747
+ v
748
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
749
+ if v is not None
750
+ )
751
+ return BaseModelOutputWithPast(
752
+ last_hidden_state=hidden_states,
753
+ past_key_values=next_cache,
754
+ hidden_states=all_hidden_states,
755
+ attentions=all_self_attns,
756
+ )
757
+
758
+
759
+ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
760
+ _tied_weights_keys = ["lm_head.weight"]
761
+
762
+ def __init__(self, config: StableLMEpochConfig):
763
+ super().__init__(config)
764
+
765
+ self.model = StableLMEpochModel(config)
766
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
767
+
768
+ # Initialize weights and apply final processing
769
+ self.post_init()
770
+
771
+ def get_input_embeddings(self):
772
+ return self.model.embed_tokens
773
+
774
+ def set_input_embeddings(self, value):
775
+ self.model.embed_tokens = value
776
+
777
+ def get_output_embeddings(self):
778
+ return self.lm_head
779
+
780
+ def set_output_embeddings(self, new_embeddings: nn.Module):
781
+ self.lm_head = new_embeddings
782
+
783
+ def get_decoder(self):
784
+ return self.model
785
+
786
+ def set_decoder(self, decoder):
787
+ self.model = decoder
788
+
789
+ def forward(
790
+ self,
791
+ input_ids: Optional[torch.LongTensor] = None,
792
+ attention_mask: Optional[torch.FloatTensor] = None,
793
+ position_ids: Optional[torch.LongTensor] = None,
794
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
795
+ inputs_embeds: Optional[torch.FloatTensor] = None,
796
+ labels: Optional[torch.LongTensor] = None,
797
+ use_cache: Optional[bool] = None,
798
+ output_attentions: Optional[bool] = None,
799
+ output_hidden_states: Optional[bool] = None,
800
+ return_dict: Optional[bool] = None,
801
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
802
+ output_attentions = (
803
+ output_attentions
804
+ if output_attentions is not None
805
+ else self.config.output_attentions
806
+ )
807
+ output_hidden_states = (
808
+ output_hidden_states
809
+ if output_hidden_states is not None
810
+ else self.config.output_hidden_states
811
+ )
812
+ return_dict = (
813
+ return_dict if return_dict is not None else self.config.use_return_dict
814
+ )
815
+
816
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
817
+ outputs = self.model(
818
+ input_ids,
819
+ attention_mask=attention_mask,
820
+ position_ids=position_ids,
821
+ past_key_values=past_key_values,
822
+ inputs_embeds=inputs_embeds,
823
+ use_cache=use_cache,
824
+ output_attentions=output_attentions,
825
+ output_hidden_states=output_hidden_states,
826
+ return_dict=return_dict,
827
+ )
828
+
829
+ hidden_states = outputs[0]
830
+ logits = self.lm_head(hidden_states).float()
831
+
832
+ loss = None
833
+ if labels is not None:
834
+ # Shift so that tokens < n predict n
835
+ shift_logits = logits[..., :-1, :].contiguous()
836
+ shift_labels = labels[..., 1:].contiguous()
837
+ # Flatten the tokens
838
+ loss_fct = CrossEntropyLoss()
839
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
840
+ shift_labels = shift_labels.view(-1)
841
+ # Enable model parallelism
842
+ shift_labels = shift_labels.to(shift_logits.device)
843
+ loss = loss_fct(shift_logits, shift_labels)
844
+
845
+ if not return_dict:
846
+ output = (logits,) + outputs[1:]
847
+ return (loss,) + output if loss is not None else output
848
+
849
+ return CausalLMOutputWithPast(
850
+ loss=loss,
851
+ logits=logits,
852
+ past_key_values=outputs.past_key_values,
853
+ hidden_states=outputs.hidden_states,
854
+ attentions=outputs.attentions,
855
+ )
856
+
857
+ def prepare_inputs_for_generation(
858
+ self,
859
+ input_ids,
860
+ past_key_values: Optional[torch.Tensor] = None,
861
+ attention_mask: Optional[torch.Tensor] = None,
862
+ inputs_embeds: Optional[torch.Tensor] = None,
863
+ **kwargs,
864
+ ):
865
+ # Trim decoder_input_ids if past is used
866
+ if past_key_values is not None:
867
+ past_length = past_key_values[0][0].shape[2]
868
+
869
+ # Some generation methods already pass only the last input ID
870
+ if input_ids.shape[1] > past_length:
871
+ remove_prefix_length = past_length
872
+ else:
873
+ # Default to old behavior: keep only final ID
874
+ remove_prefix_length = input_ids.shape[1] - 1
875
+
876
+ input_ids = input_ids[:, remove_prefix_length:]
877
+
878
+ position_ids = kwargs.get("position_ids", None)
879
+ if attention_mask is not None and position_ids is None:
880
+ # Create position_ids on the fly for batch generation
881
+ position_ids = attention_mask.long().cumsum(-1) - 1
882
+ position_ids.masked_fill_(attention_mask == 0, 1)
883
+ if past_key_values:
884
+ position_ids = position_ids[:, -1].unsqueeze(-1)
885
+
886
+ # If `inputs_embeds` are passed, we only want to use them in the 1st generation step
887
+ if inputs_embeds is not None and past_key_values is None:
888
+ model_inputs = {"inputs_embeds": inputs_embeds}
889
+ else:
890
+ model_inputs = {"input_ids": input_ids}
891
+
892
+ model_inputs.update(
893
+ {
894
+ "attention_mask": attention_mask,
895
+ "past_key_values": past_key_values,
896
+ "use_cache": kwargs.get("use_cache"),
897
+ "position_ids": position_ids,
898
+ }
899
+ )
900
+ return model_inputs
901
+
902
+ @staticmethod
903
+ def _reorder_cache(past_key_values, beam_idx):
904
+ reordered_past = ()
905
+ for layer_past in past_key_values:
906
+ reordered_past += (
907
+ tuple(
908
+ past_state.index_select(0, beam_idx.to(past_state.device))
909
+ for past_state in layer_past
910
+ ),
911
+ )
912
+ return reordered_past
913
+
914
+
915
+ StableLMEpochConfig.register_for_auto_class()
916
+ StableLMEpochForCausalLM.register_for_auto_class("AutoModelForCausalLM")
quantize_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.1,
5
+ "desc_act": true,
6
+ "sym": true,
7
+ "true_sequential": true
8
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<|padding|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "50254": {
21
+ "content": " ",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": false
27
+ },
28
+ "50255": {
29
+ "content": " ",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": false
35
+ },
36
+ "50256": {
37
+ "content": " ",
38
+ "lstrip": false,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": false
43
+ },
44
+ "50257": {
45
+ "content": " ",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": false
51
+ },
52
+ "50258": {
53
+ "content": " ",
54
+ "lstrip": false,
55
+ "normalized": true,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": false
59
+ },
60
+ "50259": {
61
+ "content": " ",
62
+ "lstrip": false,
63
+ "normalized": true,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": false
67
+ },
68
+ "50260": {
69
+ "content": " ",
70
+ "lstrip": false,
71
+ "normalized": true,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": false
75
+ },
76
+ "50261": {
77
+ "content": " ",
78
+ "lstrip": false,
79
+ "normalized": true,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": false
83
+ },
84
+ "50262": {
85
+ "content": " ",
86
+ "lstrip": false,
87
+ "normalized": true,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": false
91
+ },
92
+ "50263": {
93
+ "content": " ",
94
+ "lstrip": false,
95
+ "normalized": true,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": false
99
+ },
100
+ "50264": {
101
+ "content": " ",
102
+ "lstrip": false,
103
+ "normalized": true,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": false
107
+ },
108
+ "50265": {
109
+ "content": " ",
110
+ "lstrip": false,
111
+ "normalized": true,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": false
115
+ },
116
+ "50266": {
117
+ "content": " ",
118
+ "lstrip": false,
119
+ "normalized": true,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "50267": {
125
+ "content": " ",
126
+ "lstrip": false,
127
+ "normalized": true,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "50268": {
133
+ "content": " ",
134
+ "lstrip": false,
135
+ "normalized": true,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "50269": {
141
+ "content": " ",
142
+ "lstrip": false,
143
+ "normalized": true,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "50270": {
149
+ "content": " ",
150
+ "lstrip": false,
151
+ "normalized": true,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "50271": {
157
+ "content": " ",
158
+ "lstrip": false,
159
+ "normalized": true,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "50272": {
165
+ "content": " ",
166
+ "lstrip": false,
167
+ "normalized": true,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "50273": {
173
+ "content": " ",
174
+ "lstrip": false,
175
+ "normalized": true,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "50274": {
181
+ "content": " ",
182
+ "lstrip": false,
183
+ "normalized": true,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "50275": {
189
+ "content": " ",
190
+ "lstrip": false,
191
+ "normalized": true,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "50276": {
197
+ "content": " ",
198
+ "lstrip": false,
199
+ "normalized": true,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ }
204
+ },
205
+ "bos_token": "<|endoftext|>",
206
+ "clean_up_tokenization_spaces": true,
207
+ "eos_token": "<|endoftext|>",
208
+ "model_max_length": 1000000000000000019884624838656,
209
+ "tokenizer_class": "GPTNeoXTokenizer",
210
+ "unk_token": "<|endoftext|>"
211
+ }