File size: 7,825 Bytes
4bc0304 18df7ce 4bc0304 97d56a1 2d989ba 97d56a1 2d989ba 97d56a1 2d989ba 97d56a1 18df7ce fdc9906 18df7ce 2180bec 0091d6b 2180bec 0091d6b 2180bec 0091d6b 2180bec 18df7ce 2180bec 18df7ce 2180bec 18df7ce 2180bec 18df7ce 2180bec 18df7ce 2180bec 2d989ba c5c455d 18df7ce c5c455d 18df7ce f352f2b 18df7ce 2180bec 18df7ce c5c455d 18df7ce f352f2b 18df7ce e9e7d2c 18df7ce c5c455d 18df7ce 97d56a1 2d989ba 97d56a1 2d989ba 97d56a1 2d989ba 97d56a1 2d989ba 97d56a1 2d989ba 97d56a1 18df7ce ecf4344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
license: other
inference: false
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# WizardLM: An Instruction-following LLM Using Evol-Instruct
These files are the result of merging the [delta weights](https://huggingface.co/victor123/WizardLM) with the original Llama7B model.
The code for merging is provided in the [WizardLM official Github repo](https://github.com/nlpxucan/WizardLM).
## WizardLM-7B 4bit GPTQ
This repo contains 4bit GPTQ models for GPU inference, quantised using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
## Other repositories available
* [4bit GGML models for CPU inference](https://huggingface.co/TheBloke/wizardLM-7B-GGML)
* [Unquantised model in HF format](https://huggingface.co/TheBloke/wizardLM-7B-HF)
## How to easily download and use this model in text-generation-webui
Open the text-generation-webui UI as normal.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/wizardLM-7B-GPTQ`.
3. Click **Download**.
4. Wait until it says it's finished downloading.
5. Click the **Refresh** icon next to **Model** in the top left.
6. In the **Model drop-down**: choose the model you just downloaded,`wizardLM-7B-GPTQg`.
7. If you see an error in the bottom right, ignore it - it's temporary.
8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
9. Click **Save settings for this model** in the top right.
10. Click **Reload the Model** in the top right.
11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
## GIBBERISH OUTPUT IN `text-generation-webui`?
Please read the Provided Files section below. You should use `wizardLM-7B-GPTQ-4bit-128g.compat.no-act-order.safetensors` unless you are able to use the latest GPTQ-for-LLaMa code.
If you're using a text-generation-webui one click installer, you MUST use `wizardLM-7B-GPTQ-4bit-128g.compat.no-act-order.safetensors`.
## Provided files
Two files are provided. **The 'latest' file will not work unless you use a recent version of GPTQ-for-LLaMa**
Specifically, the 'latest' file uses `--act-order` for maximum quantisation quality and will not work with oobabooga's fork of GPTQ-for-LLaMa. Therefore at this time it will also not work with `text-generation-webui` one-click installers.
The 'compat' file will be used by default in text-generation-webui so you don't need to do anything special to use it. If you want to use the 'latest' file, please remove the 'cmopat' file - but only do this if you are able to use the latest GPTQ-for-LLaMa code.
* `wizardLM-7B-GPTQ-4bit-128g.compat.no-act-order.safetensors`
* Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
* Works with text-generation-webui one-click-installers
* Parameters: Groupsize = 128g. No act-order.
* Command used to create the GPTQ:
```
CUDA_VISIBLE_DEVICES=0 python3 llama.py wizardLM-7B-HF c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors wizardLM-7B-GPTQ-4bit-128g.no-act-order.safetensors
```
* `wizardLM-7B-GPTQ-4bit-128g.latest.act-order.safetensors`
* Only works with recent GPTQ-for-LLaMa code
* **Does not** work with text-generation-webui one-click-installers
* Parameters: Groupsize = 128g. act-order.
* Offers highest quality quantisation, but requires recent GPTQ-for-LLaMa code
* Command used to create the GPTQ:
```
CUDA_VISIBLE_DEVICES=0 python3 llama.py wizardLM-7B-HF c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors wizardLM-7B-GPTQ-4bit-128g.act-order.safetensors
```
## How to install manually in `text-generation-webui` and update GPTQ-for-LLaMa if necessary
File `wizardLM-7B-GPTQ-4bit-128g.compat.no-act-order.safetensors` can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui).
[Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)).
The other `safetensors` model file was created using `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI.
If you want to use the act-order `safetensors` files and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI:
```
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
```
Then install this model into `text-generation-webui/models` and launch the UI as follows:
```
cd text-generation-webui
python server.py --model wizardLM-7B-GPTQ --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want
```
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information.
If you can't update GPTQ-for-LLaMa or don't want to, you can use `wizardLM-7B-GPTQ-4bit-128g.compat.no-act-order.safetensors` as mentioned above, which should work without any upgrades to text-generation-webui.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model info
Overview of Evol-Instruct
Evol-Instruct is a novel method using LLMs instead of humans to automatically mass-produce open-domain instructions of various difficulty levels and skills range, to improve the performance of LLMs.
![info](https://github.com/nlpxucan/WizardLM/raw/main/imgs/git_running.png)
|