--- license: apache-2.0 base_model: studio-ousia/luke-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: luke-base-fp16-paper-setup results: [] --- # luke-base-fp16-paper-setup This model is a fine-tuned version of [studio-ousia/luke-base](https://huggingface.co/studio-ousia/luke-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3800 - Accuracy: 0.8426 - Precision: 0.8465 - Recall: 0.8370 - F1: 0.8417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5192 | 1.0 | 1074 | 0.4464 | 0.8063 | 0.8263 | 0.7756 | 0.8001 | | 0.3708 | 2.0 | 2148 | 0.3782 | 0.8315 | 0.8365 | 0.8241 | 0.8303 | | 0.3191 | 3.0 | 3222 | 0.3800 | 0.8426 | 0.8465 | 0.8370 | 0.8417 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0